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Abstract.  A brief history and biography of Descartes and his scientific work is given followed by some of the
mathematical details of a mathematical curiosity called the Folium of Descartes which he discovered in an attempt to
challenge Fermat’s extremum-finding techniques.
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1. Biographical Notes

René Descartes was born on 31 March, 1596 in the small French town of La Haye near the center of France, which has
been renamed Descartes in his honor.  He died prematurely of illness about which the circumstances are not totally clear
on 11 February, 1650 in Stockholm.   Descartes was in poor health during his early years at the Jesuit college of La
Fleche where he began his studies at the age of eight; and was given permission to stay in bed until 11 AM.  This he
developed a lifelong habit; and only  broke this custom in 1649 when Queen Christina of Sweden talked him into
teaching her to draw tangents every day at 5AM.  The most generally accepted account states that after walking to the
palace for a few months in the cold Swedish climate Descartes died of pneumonia.  But other stories say he was
poisoned. Descartes is buried in the Pantheon in Paris.

Today Descartes is remembered most as a Mathematician and Philosopher; but he also had extensive careers
as a soldier, teacher, and as a gentleman and world traveler.  Descartes obtained a law degree in 1619 from the
University of Poitiers in Paris and then enlisted in the military school at Breda. In 1618 he studied mathematics and
mechanics under the Dutch scientist Isaac Beeckman after which he began to look for a unified natural science.
Following this he joined the Bavarian army in 1619.  

Descartes lived during one of the greatest intellectual times in human history; and was a contemporary of
Galileo, Fermat, Pascal, Harvey, Huygens, Newton, Milton and Shakespeare to name a few.  Perhaps this sufficiently
fantastic to warrant using a giblet of giant-speak ‘fe fi fo folium’ from the fable Jack and the Beanstalk in the title of
this piece to association with this lofty world of giants in the stalk of history.

Finally Descartes decided to settle down and shortly after he moved to Holland in 1628 he began a major
treatise on Physics called Le Monde, ou Traité de la Lumière.  The book was almost finished when Descartes heard of
Galileo’s house arrest by the Inquisition and became adamant about not publishing it and soon began writing La
Methode.

Descartes is most famous for this work (called in full)  Discours De La Methode Pour Bien Conduire Sa Raison
et Chercher La Verite Dans Les Sciences published in Leiden in 1637 when Descartes was forty-one years old.  The
treatise had three appendices: La Dioptrique (on optics), Les Meteores (on meteorology), and La Géométrie (on
Mathematics).  Of this work Descartes wrote to his friend Mersenne:

“I have tried in my Dioptrique and my Meteores to show that my Methode is better than the vulgar, and in my
Geometrie to have demonstrated it.”
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Figure 1.  This stamp with a graph of the folium was issued
by Albania in 1966.                                                                   

    Figure 2.  The folium of Descartes described by

    the implicit equation .x axy y3 33 0− + =

Modern mathematics is founded on two fundamental advances: 

1.  The introduction of Calculus by Newton
2.  The method for the integration of algebra with geometrical proof by Descartes which led to analytic geometry.

The general idea for developing the concept of analytic geometry came to Descartes  in a dream on the 10th of November
1619 which is called by some scholars the birthday of modern mathematics.  

Descartes was a perennial skeptic and questioned the basis for epistemology especially as it related to
Aristotelian logic.  Descartes felt that only mathematics was certain and provided the more satisfactory method of
knowledge acquisition.  This philosophy of Descartes is credited as giving birth to the scientific method.

2.  Discussion Of The Folium And Some Of its History

Descartes was first to discuss the folium (leaf in Latin), which he discovered in an attempt to challenge Fermat’s
extremum-finding techniques, in 1638. Descartes challenged Fermat to find the tangent line at arbitrary points.  Fermat
achieved success immediately, much to the chagrin of Descartes.   In French the Descartes Folium is sometimes called
the noeud de ruban, or in German - Kartesisches Blatt.  

The folium first appeared in Descartes writings in a section of La Géométrie called On the nature of curved
lines which as already stated above was an appendix to his Discours De La Methode.

3.  Mathematics Related To The Folium

3.1 IMPLICIT, EXPLICIT AND PARAMETRIC FUNCTIONS

Most simple functions take the form y = f(x) where y is directly or explicitly expressed in terms of x.  Typically y is
defined as a function of x in terms of an equation of the form 

          F(x,y) = 0.          (1) 
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Equation (1) is not solved for y, because x and y are entangled with each other. If x is assigned a suitable numerical
value, the result generally produces one or more corresponding values of y.  In this kind of situation it is said that
equation (1) determines y as an implicit function(s) of x.  For example the trivial equation xy = 1 determines a single
implicit function of x, which could be written as an explicit equation in the form

                               (2)y
x

=
1

.

The implicit equation  determines two functions of x, which can be written in explicit form as x y2 2 144+ =

                And            y x= −144 2 y x= − −144 2.

As generally known, the graphic curves of these two functions are the upper and lower halves of a circle of radius 12.
The implicit equation

       with (a > 0),          (3)x y axy3 3 3+ =

which is the general form for the Folium of Descartes also has a number of implicit functions.  However the solving this
equation for y is so challenging that it is usually not attempted.

By thinking of a curve as the plot of the path of a moving point, it is usually easier to study the curve by using
two simple equations that describe x and y in terms of a third independent variable t as in 

   x = f (t) and                y = g(t)          (4)

This makes studying the curve considerably more simple than using the implicit form as in equation (1).  The variable
t can be considered the time elements of the points motion during any interval .  This third variable t ist t t1 2≤ ≤
called a parameter of equation (1) and so the equations in (4) are called parametric equations of the curve.  To revert
back to the rectangular form (implicit and explicit) one simply removes the extra parameter from the equation.

A parametric equation is an equation of a curve expressed in the form of the parameters of the equation that
locate points on the curve.  For example the parametric equations of a straight line are x = a + bt, y = c + dt; and for
a circle they are x = d cos , y = a sin .θ θ

3.2 MATHEMATICS OF THE FOLIUM - ASYMPTOTE AND TANGENT

Thus according to the insights above the parametric equations of the Folium of Descartes take the following form:

        and                  (5)x t
at
t

( ) =
+
3

1 3 y t
at

t
( ) =

+
3
1

2

3

The folium, as can be readily observed from the graph in Fig. 1 has an asymptote as shown by the equation

      y = -x -1.          (6)

The equation of the tangent at the point where t = p is

         (7)p p x p y ap( ) ( ) .3 3 22 1 2 3 0− + − + =
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3.2 MATHEMATICS OF THE FOLIUM - AREA OF THE LOOP

The area of the loop of Descartes Folium is more readily found by using the polar equation for the folium and

evaluating the area integral by substituting  tan .   The solution takes the general form . Using theu = θ 3 22a /
parametric equations in (5) the area of the loop can be calculated using Green’s theorem as given by the formula

         (8)A ydx xdy
C

= − +∫
1
2

Figure 3.  Graphic representation of the Folium of Descartes showing the relationship the constant a has to the
curve and its asymptote.
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x y axy3 3 3+ = ⇒

For ease of working first we must convert the Cartesian (rectangular or implicit) form of the Folium as in equation (3)
to it’s  parametric form as shown in equation (5)

                       and     .x t
at
t

( ) =
+
3

1 3 y t
at

t
( ) =

+
3
1

2

3

 
Next the parametric form is converted to polar form

             (9)r
at t

t
2

2 2

3 2

3 1
1

=
+

+
( ) ( )

( )

 With      and    the general equation for the area of a loop fromθ =




 =− −tan tan1 1y

x
t d

dt
t

θ =
+1 2 ,

equation (8) becomes

       (10)A
at t

t
dt

t
a

t dt
t

=
+

+ +
=

+
∞ ∞

∫ ∫
1
2

3 1
1 1

3
2

3
1

2 2

3 21 2
2

2

3 21

( ) ( )
( )

( )
( )

.

To perform the integration we use   and therefore   Then the integral becomesu t= +1 3 du t dt= 3 2 .

       (11)
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3.3 GRAPHING THE FOLIUM

It is more of a challenge to plot the graph of the Folium of Descartes without graphing software.  It is easy to see that
the graph of the folium is symmetric about the line y = x because if one reverses y and x in the equation the curve stays

exactly the same. All the graphs have a maximum when .  If one tried to use the implicit equation (3) one can’tt = 21 3/

simply create a table of x and y values from which to plot he curve since one cannot make either x or y the subject of
the equation.  To plot the equation in this manner one would have to try testing every point on the x - y plane to see if
it fit the equation to some degree.  

In the parametric form, equations (5) this difficulty is overcome because all one has to do is take several values
of t, calculate the x and y values and then plot (x,y).  In a program like Mathematica one utilizes the command:

        ParametricPlot [{3*t/(1+t^3),3*t^2(1+t^3)},{t,-100,100}, PlotRange ->{-1.5,2}]

to obtain a preliminary graph.
The folium has a discontinuity at t = -1.  The left wing is formed when  t runs from -1 to 0, the loop as t runs

from 0 to , and the right wing as t runs from   to -1.  How does the folium change for different values of a?  ∞ ∞
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The maximum of the curve occurs  when  dy/dx = 0, this is when ay = x2.  Using  y =t x for the parametric form
of the equation gives atx = x2 and when x ≠ 0 this is at x = 3at/(1 + t3) so 1 + t3 = 3 and thus  t = 21/3 is at the stationary
point.  Looking at the parametric form, this occurs at the point (21/3a, 22/3a). If one puts in an x-value just before and just
after this confirms the point to be a maximum. 

Other main graphical features of the folium in terms of t are:

1. For     −∞ < t < −1          from the parametric form of the equation the graphs lies in the fourth quadrant because x 
 is positive and  y is negative.

 
2. For     −1 < t < 0  t          the graphs lie in the second quadrant because x negative and y is positive. 

3. For     0 < t < 1               3at > 0 and   so the graphs lie in the first quadrant because  0 < y < x .t 3 0>

4. For     1 < t < + ∞           Again when  3at > 0 and 1 +   the graphs again lie in the first quadrant because x t 3 0>
               and y are positive (0 < x < y) for as y = tx then x< y. 

What would happen to the graphs if  t = −1?  If t = - 1 the graph is undefined; but as t approaches - 1 the absolute values
of x and y move toward the asymptote of the curve at y = - x.  This values of t can be seen in Fig. 4 below. 
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Figure 5.  Variations in the graph of the Folium as a changes from positive to negative between   -1 and 2/3.

A final consideration for graphing the curve of Descartes’ Folium is the following. Is there a point such that
y = x?  Considering the equation, 2x3=3ax2 at such a point where y = x; since we already know the point (0,0) is on the
graph,  for other points we can divide by x2. We get x = y = 3a/2 which corresponds to t = 1. The important thing about
this point is that considering our formula for dy/dx,  if x = y then dy/dx = −1 and so then we know that at this point the
gradient is the same as that of the line y = −x. This tells us that (since the curve is symmetrical about y = x and using
parts [3] and [4] above concerning graphical features)  there is a 'loop' at this point.

4.  End Note

The Folium of Descartes, although seemingly little more than a curiosity today, played a role in the early days of the
development of calculus; and is still (as perhaps you noticed) quite fascinating to mathemagicians!  As one notes above
in terms of the multiple forms the folium equation takes, especially relative to the challenges of plotting the curve in
a simple manner, Descartes challenge to Fermat’s method of finding tangents clearly demonstrates the elegance and
beauty of calculus.
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