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Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Fur-
thermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of
antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for
this venture is the old papers of Ogievetskĭı and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskĭı and Pol-
ubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We
analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears
to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner
formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the
second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of
the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard
procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity.
Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this
theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to
the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the
relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions,
fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in
the next few years.
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1. Introduction

In this presentation we re-examine the theory of the
4-potential field, the antisymmetric tensor fields of
the second ranks and the spin-2 fields coming from
the modified Bargmann-Wigner formalism. In the
series of the papers1–4 we tried to find connection
between the theory of the quantized antisymmetric
tensor (AST) field of the second rank (and that of
the corresponding 4-vector field) with the 2(2s + 1)
Weinberg-Tucker-Hammer formalism.5,6 Several pre-
viously published works, Refs.,7–11 introduced the
concept of the notoph (the Kalb-Ramond field) which
is constructed on the basis of the antisymmetric ten-
sor “potentials”. It represents itself the non-trivial
spin-0 field. The well-known textbooks12–14 did not
discuss the problems, whether the massless quantized
AST “potential” and the quantized 4-vector field are
transverse or longitudinal fields (in the sense if the
helicity h = ±1 or h = 0)? can the electromagnetic
potential be a 4-vector in a quantized theory ? con-
tradictions with the Weinberg theorem “that no sym-

metric tensor field of rank s can be constructed from
the creation and annihilation operators of massless
particles of spin s”? how should the massless limit be
taken? and many other fundamental problems of the
physics of bosons. However, one can advise Refs.5,15

First of all, after a referee of “Found. Phys.” and
“Int. J. Mod. Phys.” we note that 1) “...In natural
units (c = ~ = 1) ... a lagrangian density, since the
action is dimensionless, has dimension of [energy]4”;
2) One can always renormalize the lagrangian den-
sity and “one can obtain the same equations of mo-
tion... by substituting L → (1/MN )L, where M is
an arbitrary energy scale”, cf. Ref.;3 3) the right
physical dimension of the field strength tensor Fµν

is [energy]2; “the transformation Fµν → (1/2m)Fµν

[which was regarded in Ref.16,17] ... requires a more
detailed study ... [because] the transformation above
changes its physical dimension: it is not a simple
normalization transformation”. Furthermore, in the
first papers on the notoph8–10 the authors used the
normalization of the 4-vector Fµ field (which is re-
lated to a third-rank antisymmetric field tensor) to
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[energy]2 and, hence, the antisymmetric tensor “po-
tentials” Aµν , to [energy]1. We try to discuss these
problems on the basis of the generalized Bargmann-
Wigner formalism.18 The Proca and Maxwell for-
malisms are generalized too, see, e. g., Ref.4 In the
next Sections we consider the spin-2 equations. A
field of the rest mass m and the spin s ≥ 1

2 is rep-
resented by a completely symmetric multispinor of
rank 2s. The particular cases s = 1 and s = 3

2 have
been considered in the textbooks, e. g., Ref.19 The
spin-2 case can also be of some interest. Neverthe-
less, questions of the redundant components of the
higher-spin relativistic equations are not yet under-
stood in detail.20 In the last Sections (in the previ-
ous papers of us, as well) we discuss the questions
of quantization, interactions and relations between
various higher-spin theories.

2. 4-potentials and Antisymmetric
Tensor Field. Normalization.

The spin-0 and spin-1 field particles can be
constructed by taking the direct product of 4-
spinors.18,19 Let us firstly repeat the Bargmann-
Wigner procedure for bosons of spin 0 and 1. The
set of basic equations for s = 0 and s = 1 are writ-
ten, e.g., in Ref.19

[iγµ∂µ −m]αβ Ψβγ(x) = 0 , (1)

[iγµ∂µ −m]γβ Ψαβ(x) = 0 . (2)

We expand the 4 × 4 matrix field function into the
antisymmetric and symmetric parts in the standard
way

Ψ[αβ] = Rαβφ+ γ5
αδRδβφ̃+ γ5

αδγ
µ
δτRτβÃµ , (3)

Ψ{αβ} = γµ
αδRδβAµ + σµν

αδRδβFµν , (4)

where R = CP has the properties (which are neces-
sary to make expansions (3,4) to be possible in such
a form)

RT = −R , R† = R = R−1 , (5)

R−1γ5R = (γ5)T , (6)

R−1γµR = −(γµ)T , (7)

R−1σµνR = −(σµν)T . (8)

The explicit form of this matrix can be chosen:

R =
(
iΘ 0
0 −iΘ

)
, Θ = −iσ2 =

(
0 −1
1 0

)
, (9)

provided that γµ matrices are in the Weyl represen-
tation. The equations (1,2) lead to the Kemmer set
of the s = 0 equations:

mφ = 0 , (10)

mφ̃ = −i∂µÃ
µ , (11)

mÃµ = −i∂µφ̃ , (12)

and to the Proca-Duffin-Kemmer set of the equations
for the s = 1 case: b

∂αF
αµ +

m

2
Aµ = 0 , (15)

2mFµν = ∂µAν − ∂νAµ , (16)

In the meantime, in the textbooks, the latter set is
usually written as (e.g., p. 135 of Ref.14)

∂αF
αµ +m2Aµ = 0 , (17)

Fµν = ∂µAν − ∂νAµ , (18)

The set (17,18) is obtained from (15,16) after the nor-
malization change Aµ → 2mAµ, or Fµν → 1

2mFµν .
Of course, one can investigate other sets of equa-
tions with different normalizations of the Fµν and
Aµ fields. Are all these sets of equations equivalent?
As we can see, to answer this question is not trivial.
At the moment, we mention that the massless limit
can and must be taken in the end of calculations only,
i. e., for physical quantities.

In order to be able to answer the question about
the behaviour of eigenvalues of the spin operator
Ji = 1

2ε
ijkJjk in the massless limit one should

know the behaviour of the fields Fµν and/or Aµ in
the massless limit. We want to analyze the first set

bWe could use another symmetric matrix γ5σµνR in the ex-
pansion of the symmetric spinor of the second rank.17 In this
case the equations are

i∂α
eF αµ +

m

2
Bµ = 0 , (13)

2im eF µν = ∂µBν − ∂νBµ , (14)

in which the dual tensor eF µν = 1
2
εµνρσFρσ presents, because

we used that in the Weyl representation γ5σµν = i
2
εµνρσσρσ ;

Bµ is the corresponding vector potential. The equation for
the antisymmetric tensor field (which can be obtained from
this set) does not change its form but we see some “renormal-
ization” of the field functions. In general, it is permitted to
choose various relative factors in the expansions of the sym-
metric wave function (4). It is also permitted to consider the
matrix term of the form γ5σµν . We have additional factors in
equations connecting physical fields and their potentials. They
can be absorbed by redefinitions of the potentials/fields. The
above shows that the dual tensor of the second rank can also
be epxanded in potentials. See below.
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(15,16). If one chooses the following definitions (p.
209 of Ref.15)

εµ(0,+1) = − 1√
2


0
1
i

0

 , εµ(0, 0) =


0
0
0
1

 , (19)

εµ(0,−1) =
1√
2


0
1
−i
0

 , (20)

and (p̂i = pi/ | p |, γ = Ep/m), p. 68 of Ref.,15

εµ(p, σ) = Lµ
ν(p)εν(0, σ) , (21)

L0
0(p) = γ , Li

0(p) = L0
i(p) = p̂i

√
γ2 − 1 , (22)

Li
k(p) = δik + (γ − 1)p̂ip̂k (23)

for the 4-vector potential field,c p. 129 of Ref.14

Aµ(xµ) =
∑

σ=0,±1

∫
d3p

(2π)3
1

2Ep

[
εµ(p, σ)a(p, σ)e−ip·x+

+ (εµ(p, σ))cb†(p, σ)e+ip·x]
, (24)

The normalization of the wave functions in the
momentum representation is chosen to the unit,
ε∗µ(p, σ)εµ(p, σ) = −1.d,e We observe that in the
massless limit all the defined polarization vectors of
the momentum space do not have good behaviour;
the functions describing spin-1 particles tend to in-
finity.f Nevertheless, after renormalizing the poten-
tials, e. g., εµ → uµ ≡ mεµ we come to the field

cRemember that the invariant integral measure over the
Minkowski space for physical particles isZ

d4pδ(p2 −m2) ∼
Z

d3p

2Ep
, Ep =

p
p2 + m2 .

Therefore, we use the field operator as in (24). The coef-
ficient (2π)3 can be considered at this stage as chosen for
the convenience. In Ref.15 the factor 1/(2Ep) was absorbed
in creation/annihilation operators, and instead of the field
operator (24) the operator was used in which the εµ(p, σ)
functions for a massive spin-1 particle were substituted by
uµ(p, σ) = (2Ep)−1/2εµ(p, σ).
dThe metric used in this paper gµν = diag(1,−1,−1,−1) is
different from that of Ref.15
eIn this paper we assume that [εµ(p, σ)]c = eiασ [εµ(p, σ)]∗,
with ασ being arbitrary phase factors at this stage. Thus,
C = I4×4 and SC = K.
f It is interesting to remind that the authors of Ref.14 (see page
136 therein) tried to inforce the Stueckelberg’s Lagrangian in
order to overcome the difficulties related with the m → 0
limit (or the Proca theory→ Quantum Electrodynamics). The
Stueckelberg’s Lagrangian is well known to contain an addi-
tional term which may be put in correspondence to some scalar
(longitudinal) field (cf. Ref.21).

functions in the momentum representation:

uµ(p,+1) = − N√
2m


pr

m+ p1pr

Ep+m

im+ p2pr

Ep+m
p3pr

Ep+m

 , (25)

uµ(p,−1) =
N√
2m


pl

m+ p1pl

Ep+m

−im+ p2pl

Ep+m
p3pl

Ep+m

 , (26)

uµ(p, 0) =
N

m


p3

p1p3
Ep+m
p2p3

Ep+m

m+ p2
3

Ep+m

 , (27)

(N = m and pr,l = p1 ± ip2) which do not diverge
in the massless limit. Two of the massless functions
(with σ = ±1) are equal to zero when a particle,
described by this field, is moving along the third axis
(p1 = p2 = 0, p3 6= 0). The third one (σ = 0) is

uµ(p3, 0) |m→0=


p3

0
0
p2
3

Ep

 ≡


Ep

0
0
Ep

 , (28)

and at the rest (Ep = p3 → 0) also vanishes. Thus,
such a field operator describes the “longitudinal pho-
tons” what is in the complete accordance with the
Weinberg theorem B − A = h for massless particles
(we use the D(1/2, 1/2) representation). Thus, the
change of the normalization can lead to the “change”
of physical content described by the classical field. In
the quantum case one should somehow fix the form
of commutation relations by some physical princi-
ples. They may be fixed by requirements of the di-
mensionless of the action in the natural unit system
(apart from the requirements of the translational and
rotational invariancies; the accustomed behaviour of
the Feynman-Dyson propagator), etc.

Furthermore, it is easy to find the properties of
the physical fields Fµν (defined as in (15,16), for in-
stance) in the massless zero-momentum limit. It is
straightforward to find B(+)(p, σ) = i

2mp× u(p, σ),
E(+)(p, σ) = i

2mp0u(p, σ) − i
2mpu0(p, σ) and the

corresponding negative-energy strengths for the field
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operator (in general, complex-valued)

Fµν =
∑

σ=0,±1

∫
d3p

(2π)32Ep

[
Fµν

(+)(p, σ) a(p, σ) e−ipx

+ Fµν
(−)(p, σ) b†(p, σ) e+ipx

]
, (29)

see Refs.16,22

For the sake of completeness let us present the
vector corresponding to the “time-like” polarization:

uµ(p, 0t) =
N

m


Ep

p1

p2

p3

 , (30)

B(±)(p, 0t) = 0 , E(±)(p, 0t) = 0 . (31)

The polarization vector uµ(p, 0t) has good behaviour
in m → 0, N = m (and also in the subsequent
limit p → 0) and it may correspond to some field
(particle). As one can see the field operator may de-
scribe a situation when a particle and an antiparticle
have opposite intrinsic parities, if it was composed of
the state of longitudinal polazrization (e.g., as the
“positive-energy” solution) and that of time-like po-
larization (e.g., as the “negative-energy” solution).
Furthermore, in the case of the normalization of po-
tentials to the mass N = m the physical fields B and
E, which correspond to the “time-like” polarization,
are equal to zero identically. The longitudinal fields
(strengths) are equal to zero in this limit only when
one chooses the frame with p3 =| p |, cf. with the
light front formulation, Ref.2 In the case N = 1 and
(15,16) the fields B±(p, 0t) and E±(p, 0t) would be
undefined.

3. Lagrangian, Energy-Momentum
Tensor and Angular Momentum.

We begin with the Lagrangian, including, in general,
mass term:a

L =
1
4
(∂µAνα)(∂µAνα)− 1

2
(∂µA

µα)(∂νAνα)−

− 1
2
(∂µAνα)(∂νAµα) +

1
4
m2AµνA

µν . (33)

The Lagrangian leads to the equation of motion in
the following form (provided that the appropriate an-
tisymmetrization procedure has been taken into ac-
count):

1
2
( +m2)Aµν + (∂µA

,α
αν − ∂νA

,α
αµ) = 0 , (34)

where = −∂α∂
α, cf. with the set of equations

(15,16). It is this equation for antisymmetric-tensor-
field components that follows from the Proca-Duffin-
Kemmer consideration provided that m 6= 0 and in
the final expression one takes into account the Klein-
Gordon equation ( −m2)Aµν = 0. The latter ex-
presses relativistic dispersion relations E2−p2 = m2.

Following the variation procedure one can obtain
the energy-momentum tensor:

Θλβ =
1
2

[
(∂λAµα)(∂βAµα)− 2(∂µA

µα)(∂βAλ
α)−

− 2(∂µAλα)(∂βAµα)
]
− Lgλβ . (35)

One can also obtain that for rotations xµ′
= xµ +

ωµνxν the corresponding variation of the wave func-

aHere we use the notation Aµν for the AST due to different
“mass dimension” of the fields. The massless (m = 0) La-
grangian is connected with the Lagrangians used in the con-
formal field theories by adding the total derivative:

LCFT = L+
1

2
∂µ (Aνα∂νAµα −Aµα∂νAνα) . (32)

The Kalb-Ramond gauge-invariant form (with respect to
“gauge” transformations Aµν → Aµν + ∂νΛµ − ∂µΛν),
Refs.,8–10 is obtained only if one uses the Fermi procedure
mutatis mutandis by removing the additional “phase” field
λ(∂µAµν)2 from the Lagrangian. This has certain analogy
with the QED, where the question, whether the Lagrangian is
gauge-invariant or not, is solved depending on the presence of
the term λ(∂µAµ)2. For details see Refs.9,10

In general it is possible to introduce various forms of the
mass term and forms of corresponding normalization of the
field. But, the dimensionless of the action S imposes some
restrictions. We know that Aµν (in order to be able to de-
scribe long-range forces) should have the dimension [energy]2

in the natural unit system. In order to take this into account
one should divide the Lagrangian (33) by m2; calculate cor-
responding dynamical invariants, other observable quantities;
and only then study m → 0 limit.



October 7, 2014 14:41 WSPC - Proceedings Trim Size: 11in x 8.5in DvoeglazovVigier2014

5

tion is found from the formula:

δAαβ =
1
2
ωκτT αβ,µν

κτ Aµν . (36)

The generators of infinitesimal transformations are
then defined as

T αβ,µν
κτ =

1
2
gαµ(δβ

κ δ
ν
τ − δβ

τ δ
ν
κ) +

1
2
gβµ(δν

κδ
α
τ − δν

τ δ
α
κ )

+
1
2
gαν(δµ

κ δ
β
τ − δµ

τ δ
β
κ) +

1
2
gβν(δα

κ δ
µ
τ − δα

τ δ
µ
κ).(37)

It is T αβ,µν
κτ , the generators of infinitesimal transfor-

mations, that enter in the formula for the relativistic
spin tensor:

Jκτ =
∫
d3x

[
∂L

∂(∂Aαβ/∂t)
T αβ,µν

κτ Aµν

]
. (38)

As a result one obtains:

Jκτ =
∫
d3x [(∂µA

µν)(g0κAντ − g0τAνκ)−

− (∂µA
µ

κ)A0τ + (∂µA
µ

τ )A0κ+

+ Aµ
κ(∂0Aτµ + ∂µA0τ + ∂τAµ0)

− Aµ
τ (∂0Aκµ + ∂µA0κ + ∂κAµ0)] . (39)

If one agrees that the orbital part of the angular
momentum

Lκτ = xκΘ0 τ − xτΘ0 κ , (40)

with Θτλ being the energy-momentum tensor, does
not contribute to the Pauli-Lubanski operator when
acting on the one-particle free states (as in the Dirac
s = 1/2 case), then the Pauli-Lubanski 4-vector is
constructed as follows, Eq. (2-21) of Ref.14 :

Wµ = −1
2
εµκτνJ

κτP ν , (41)

with Jκτ defined by Eqs. (38,39). The 4-momentum
operator P ν can be replaced by its eigenvalue when
acting on the plane-wave eigenstates.

Furthermore, one should choose space-like nor-
malized vector nµnµ = −1, for example n0 = 0,
n = p̂ = p/|p|. b After lengthy calculations in a

bOne should remember that the helicity operator is usually
connected with the Pauli-Lubanski vector in the following
manner (J · bp) = (W · bp)/Ep, see Ref.24 The choice of Ref.,14

p. 147, nµ =
“
tµ − pµ p·t

m2

”
m
|p| , with tµ ≡ (1, 0, 0, 0) being a

time-like vector, is also possible but it leads to some oscurities
in the procedure of taking the massless limit.

spirit of pp. 58, 147 of Ref.,14 one can find the ex-
plicit form of the relativistic spin:

(Wµ · nµ) = −(W · n) = −1
2
εijknkJ ijp0 , (42)

Jk =
1
2
εijkJ ij = εijk

∫
d3x

[
A0i(∂µA

µj)+

+ A j
µ (∂0Aµi + ∂µAi0 + ∂iA0µ)

]
. (43)

Now it becomes obvious that the application of the
generalized Lorentz conditions (which are the quan-
tum versions of free-space dual Maxwell’s equations)
leads in such a formulation to the absence of elec-
tromagnetism in a conventional sense. The resulting
Kalb-Ramond field is longitudinal (helicity h = 0).
All the components of the angular momentum tensor
for this case are identically equated to zero.

According to [8, Eqs.(9,10)] we proceed in the
construction of the “potentials” for the notoph :

F̃µν(p) ∼ Aµν(p) = N
[
ε(1)µ (p)ε(2)ν (p)− ε(1)ν (p)ε(2)µ (p)

]
(44)

On using explicit forms for the polarization vectors
in the momentum space one obtains

Aµν =
iN2

m


0 −p2 p1 0
p2 0 m+ prpl

p0+m
p2p3

p0+m

−p1 −m− prpl

p0+m 0 − p1p3
p0+m

0 − p2p3
p0+m

p1p3
p0+m 0


(45)

i.e., it coincides with the longitudinal components
of the antisymmetric tensor obtained in Refs. [1,
Eqs.(2.14,2.17)] and [16, Eqs.(17b,18b)] within the
normalization and different forms of the spin basis.
The longitudinal states reduce to zero in the mass-
less case under appropriate choice of the normaliza-
tion and only if a s = 1 particle moves along with
the third axis OZ.

Finally, we agree with the previous authors, e. g.,
Ref.23 , see Eq. (4) therein, about the gauge non-
invariance of the separation of the angular momen-
tum of the electromagnetic field into the “orbital”
and “spin” part (43). We proved again that for
the antisymmetric tensor field J ∼

∫
d3x (E × A).

So, what people actually did (when spoken about
the Ogievetskĭı-Polubarinov-Kalb-Ramond field) is:
When N = m they considered the gauge part of
the 4-vector field functions. Then, they equated A
of the transverse modes on choosing pr = pl = 0 in
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the massless limit (see formulas (26)).c Under this
choice the E(p, 0) and B(p, 0) are equal to zero in
massless limit. But, the gauge part of uµ(p, 0) is not.
The spin angular momentum can still be zero.

4. The Relations with the 2(2s + 1)
Formalism. Photon-Notoph
Equations.

For the spin 1 one can start from

[γαβp
αpβ −Apαpα +Bm2]Ψ = 0 , (46)

where pµ = −i∂µ and γαβ are the Barut-Muzinich-
Williams covariantly-defined 6×6 matrices. One can
consider four cases:

• Ψ(I) =
(
E + iB
E− iB

)
, P = −1, where Ei and

Bi are the components of the tensor.

• Ψ(II) =
(
B− iE
B + iE

)
, P = +1, where Ei, Bi

are the components of the tensor.
• Ψ(III) = Ψ(I), but Ei and Bi are the cor-

responding vector and axial-vector compo-
nents of the dual tensor F̃µν .

• Ψ(IV ) = Ψ(II), where Ei and Bi are the
components of the dual tensor F̃µν .

The mappings of the Weinberg-Tucker-Hammer
(WTH) equations are:

∂α∂
µF

(I)
µβ − ∂β∂

µF (I)
µα

+
A− 1

2
∂µ∂µF

(I)
αβ +

B

2
m2F

(I)
αβ = 0 , (47)

∂α∂
µF

(II)
µβ − ∂β∂

µF (II)
µα

− A+ 1
2

∂µ∂µF
(II)
αβ − B

2
m2F

(II)
αβ = 0 , (48)

∂α∂
µF̃

(III)
µβ − ∂β∂

µF̃ (III)
µα

− A+ 1
2

∂µ∂µF̃
(III)
αβ − B

2
m2F̃

(III)
αβ = 0 , (49)

∂α∂
µF̃

(IV )
µβ − ∂β∂

µF̃ (IV )
µα

+
A− 1

2
∂µ∂µF̃

(IV )
αβ +

B

2
m2F̃

(IV )
αβ = 0 , (50)

where the superindices (I) − (IV ) refer to different
forms of the WTH field functions , which are com-
posed from E and B, polar and axial 3-vectors. In the

cThe reader, of course, can consider this procedure as the usual
gauge transformation, Aµ → Aµ + ∂µχ.

Tucker-Hammer case (A = 1, B = 2) we can recover
the Proca theory from (47):

∂α∂
µFµβ − ∂β∂

µFµα +m2Fαβ = 0 , (51)

(Aν = − 1
m2 ∂

αFαν should be substituted in Fµν =
∂µAν − ∂νAµ, and multiplied by m2).

We also noted that the massless limit of this
theory contains the Maxwell theory as a particular
case. In16,17,22 we showed that it is possible to define
various massless limits for the Proca-Duffin-Kemmer
theory. Another one is the Ogievetskĭı-Polubarinov
notoph, see above. The transverse components of the
AST field can be removed from the corresponding
Lagrangian by means of the “new gauge transforma-
tion” Aµν → Aµν + ∂µΛν − ∂νΛµ, with the vector
gauge function Λµ.

Bargmann and Wigner claimed explicitly that
they constructed (2s + 1) states (the Weinberg-
Tucker-Hammer theory has essentially 2(2s+1) com-
ponents). Therefore, we now apply

Ψ{αβ} = (γµR)αβ(camAµ + cfFµ) +

+ (σµνR)αρ(cAm(γ5)ρβAµν + cF IρβFµν) . (52)

Thus, Aµ, Aµν and Fµ, Fµν have different mass di-
mension. The constants ci are some numerical di-
mensionless coefficients. The γµR, σµνR and γ5σµνR

are the symmetrical matrices. The substitution of
the above expansion into the Bargmann-Wigner set,
Ref.,19 gives us the new Proca-like equations:

cam(∂µAν − ∂νAµ) + cf (∂µFν − ∂νFµ) =

= icAm
2εαβµνA

αβ + 2mcFFµν (53)

cam
2Aµ + cfmFµ = icAmεµναβ∂

νAαβ + 2cF∂νFµν

. (54)

In the case ca = 1, cF = 1
2 and cf = cA = 0 they

are reduced to the ordinary Proca equations. In the
general case we obtain dynamical equations which
connect the photon, the notoph and their potentials.
The divergent (in m → 0) parts of field functions
and those of dynamical variables should be removed
by the corresponding gauge (or the Kalb-Ramond
gauge) transformations. It is known that the notoph
massless field is considered to be the pure longi-
tudinal field (h = 0) after one takes into account
∂µA

µν = 0. Apart from these dynamical equations
we can obtain a number of constraints by means
of subtraction of the equations of the Bargmann-
Wigner system (instead of addition as for (53,54)).
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In fact, they give F̃µν ∼ imAµν and Fµ ∼ mAµ,
as in Ref.8 . Thus, after the suitable choice of the
dimensionless coefficients ci the Lagrangian density
for the photon-notoph field can be proposed:

L = LProca + LNotoph = −1
8
FµF

µ − 1
4
FµνF

µν +

+
m2

2
AµA

µ +
m2

4
AµνA

µν , (55)

The limit m → 0 may be taken for dynamical vari-
ables, in the end of calculations only.

Furthermore, it is logical to introduce the nor-
malization scalar field ϕ(x) and to consider the ex-
pansion:

Ψ{αβ} = (γµR)αβ(ϕAµ) + (σµνR)αβFµν . (56)

Then, we arrive at the following set

2mFµν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ ,

(57)

∂νFµν =
m

2
(ϕAµ) , (58)

which in the case of the constant scalar field ϕ =
2m can again be reduced to the system of the Proca
equations. The additional constraints are

(∂µϕ)Aµ + ϕ(∂µAµ) = 0 , (59)

∂µF̃
µν = 0 . (60)

At this moment, it is not yet obvious, how can
we account for other equations in the (1, 0) ⊕ (0, 1)
representation rigorously. One can wish to seek the
generalization of the Proca system on the basis of
the introduction of two mass parameters m1 and m2.
Another equation in the (1/2, 0)⊕ (0, 1/2) represen-
tation was discussed in Ref.25 :[

iγµ∂µ −m1 − γ5m2

]
Ψ(x) = 0 . (61)

The Bargmann-Wigner procedure for this system of
the equations (which include the γ5 matrix in the
mass term) gives:

2m1F
µν + 2im2F̃

µν = ϕ(∂µAν − ∂νAµ) +

+ (∂µϕ)Aν − (∂νϕ)Aµ , (62)

∂νFµν =
m1

2
(ϕAµ), (63)

with the constraints

(∂µϕ)Aµ + ϕ(∂µAµ) = 0 , (64)

∂ν F̃µν =
im2

2
(ϕAµ) . (65)

Next, the Tam-Happer experiments26 on two
laser beams interaction did not find satisfactory ex-
planation in the framework of the ordinary QED. On
the other hand, in Ref.27 a very interesting model
has been proposed. It is based on gauging the Dirac
field on using the coordinate-dependent parameters
αµν(x) in

ψ(x) → ψ′(x′) = Ωψ(x) , Ω = exp
[
i

2
σµναµν(x)

]
.

(66)
Thus, the second “photon” was introduced. The com-
pensating 24-component field Bµ,νλ reduces to the
4-vector field as follows:

Bµ,νλ =
1
4
εµνλσa

σ(x) . (67)

As readily seen after comparison of these formulas
with those of Refs.8–10 , the second photon is noth-
ing more than the Ogievetskĭı-Polubarinov notoph
within the normalization.

5. The Bargmann-Wigner Formalism
for Spin 2.

In this Section we use the commonly-accepted pro-
cedure for the derivation of higher-spin equations.18

We begin with the equations for the 4-rank symmet-
ric spinor:

[iγµ∂µ −m]αα′ Ψα′βγδ = 0 , (68)

[iγµ∂µ −m]ββ′ Ψαβ′γδ = 0 , (69)

[iγµ∂µ −m]γγ′ Ψαβγ′δ = 0 , (70)

[iγµ∂µ −m]δδ′ Ψαβγδ′ = 0 . (71)

We proceed expanding the field function in the com-
plete set of symmetric matrices. In the beginning let
us use the first two indices:

Ψ{αβ}γδ = (γµR)αβΨµ
γδ + (σµνR)αβΨµν

γδ . (72)

We would like to write the corresponding equations
for functions Ψµ

γδ and Ψµν
γδ in the form:

2
m
∂µΨµν

γδ = −Ψν
γδ , (73)

Ψµν
γδ =

1
2m

[
∂µΨν

γδ − ∂νΨµ
γδ

]
. (74)

The constraints (1/m)∂µΨµ
γδ = 0 and

(1/m)εµν
αβ ∂µΨαβ

γδ = 0 can be regarded as a conse-
quence of Eqs. (73,74). Next, we present the vector-
spinor and tensor-spinor functions as

Ψµ
{γδ} = (γκR)γδG

µ
κ + (σκτR)γδF

µ
κτ , (75)

Ψµν
{γδ} = (γκR)γδT

µν
κ + (σκτR)γδR

µν
κτ , (76)
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i. e., using the symmetric matrices in indices γ and δ.
Hence, the resulting tensor equations are (cf. Ref.28)
:

2
m
∂µT

µν
κ = −G ν

κ , (77)

2
m
∂µR

µν
κτ = −F ν

κτ , (78)

T µν
κ =

1
2m

[∂µG ν
κ − ∂νGµ

κ ] , (79)

Rµν
κτ =

1
2m

[∂µF ν
κτ − ∂νF µ

κτ ] . (80)

The constraints are re-written to

1
m
∂µG

µ
κ = 0 ,

1
m
∂µF

µ
κτ = 0 , (81)

1
m
εαβνµ∂

αT βν
κ = 0 ,

1
m
εαβνµ∂

αR βν
κτ = 0 .

(82)

However, we need to make symmetrization over
these two sets of indices {αβ} and {γδ}. The to-
tal symmetry can be ensured if one contracts the
function Ψ{αβ}{γδ} with the antisymmetric matrices
R−1

βγ , (R−1γ5)βγ and (R−1γ5γλ)βγ , and equate all
these contractions to zero (similar to the s = 3/2
case considered in Ref. [19, p. 44]). We obtain addi-
tional constraints on the tensor field functions. We
explicitly showed that all field functions become to
be equal to zero. Such a situation cannot be consid-
ered as a satisfactory one, because it does not give
us any physical information.

We shall modify the formalism in the spirit of
Ref.17 The field function (72) is now presented as

Ψ{αβ}γδ = α1(γµR)αβΨµ
γδ + α2(σµνR)αβΨµν

γδ +

+α3(γ5σµνR)αβΨ̃µν
γδ , (83)

with

Ψµ
{γδ} = β1(γκR)γδG

µ
κ + β2(σκτR)γδF

µ
κτ +

+ β3(γ5σκτR)γδF̃
µ

κτ , (84)

Ψµν
{γδ} = β4(γκR)γδT

µν
κ + β5(σκτR)γδR

µν
κτ +

+ β6(γ5σκτR)γδR̃
µν
κτ , (85)

Ψ̃µν
{γδ} = β7(γκR)γδT̃

µν
κ + β8(σκτR)γδD̃

µν
κτ +

+ β9(γ5σκτR)γδD
µν
κτ . (86)

Hence, the function Ψ{αβ}{γδ} can be expressed
as a sum of nine terms. The corresponding dynamical

equations are given in the following form:

2α2β4

m
∂νT

µν
κ +

iα3β7

m
εµναβ∂ν T̃κ,αβ = α1β1G

µ
κ(87)

2α2β5

m
∂νR

µν
κτ +

iα2β6

m
εαβκτ∂νR̃

αβ,µν +

+
iα3β8

m
εµναβ∂νD̃κτ,αβ −

α3β9

2
εµναβελδκτD

λδ
αβ =

= α1β2F
µ

κτ +
iα1β3

2
εαβκτ F̃

αβ,µ , (88)

2α2β4T
µν

κ + iα3β7ε
αβµν T̃κ,αβ =

=
α1β1

m
(∂µG ν

κ − ∂νGµ
κ ) , (89)

2α2β5R
µν
κτ + iα3β8ε

αβµνD̃κτ,αβ +

+iα2β6εαβκτ R̃
αβ,µν − α3β9

2
εαβµνελδκτD

λδ
αβ =

=
α1β2

m
(∂µF ν

κτ − ∂νF µ
κτ ) +

+
iα1β3

2m
εαβκτ (∂µF̃αβ,ν − ∂ν F̃αβ,µ) . (90)

In general, the coefficients αi and βi may now carry
some dimension. The essential constraints can be
found in Ref.29 They are the results of contractions
of the field function with six antisymmetric matri-
ces, as above. As a discussion, we note that in such
a framework we have physical content because only
certain combinations of field functions can be equal
to zero. In general, the fields F µ

κτ , F̃ µ
κτ , T µν

κ , T̃ µν
κ , and

Rµν
κτ , R̃µν

κτ , D µν
κτ , D̃ µν

κτ correspond to different physi-
cal states. The equations describe couplings one state
to another.

Furthermore, from the set of equations (87-90)
one obtains the second-order equation for symmetric
traceless tensor of the second rank (α1 6= 0, β1 6= 0):

1
m2

[∂ν∂
µG ν

κ − ∂ν∂
νGµ

κ ] = Gµ
κ . (91)

After the contraction in indices κ and µ this equation
is reduced to:

∂µG
µ
κ = Fκ (92)

1
m2

∂κF
κ = 0 , (93)

i. e., the equations which connect the analogue of
the energy-momentum tensor and the analogue of
the 4-vector potential. See also the works on the no-
tivarg concept.30 Further investigations may provide
additional foundations to “surprising” similarities of
gravitational and electromagnetic equations in the
low-velocity limit, Refs.31–34
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6. Interactions with Fermions.

The possibility of terms such as σ · [A × A∗] ap-
pears to be related to the matters of chiral interac-
tions.35,36 As we are now convinced, the Dirac field
operator can be always presented as a superposition
of the self- and anti-self charge conjugate field opera-
tors (cf. Ref.38). The anti-self charge conjugate part
gives the self charge conjugate part after multiplying
by the γ5 matrix, and vice versa. We derived

[iγµD∗
µ −m]ψs

1 = 0 , (94)

[iγµDµ −m]ψa
2 = 0 . (95)

Both equations lead to the interaction terms such as
σ · [A ×A∗] provided that the 4-vector potential is
considered as a complex function(al). In fact, from
(94) we have:

iσµ∇µχ1 −mφ1 = 0 , iσ̃µ∇∗
µφ1 −mχ1 = 0 . (96)

And, from (95) we have

iσµ∇∗
µχ2 −mφ2 = 0 , iσ̃µ∇µφ2 −mχ2 = 0 . (97)

The meanings of σµ and σ̃µ are obvious from the
definition of γ matrices. The derivatives are defined:

Dµ = ∂µ − ieγ5Cµ + eBµ , ∇µ = ∂µ − ieAµ , (98)

and Aµ = Cµ + iBµ. Thus, relations with the mag-
netic monopoles can be established.

From the above systems we extract the
terms ±e2σiσjAiA

∗
j , which lead to the discussed

terms.35,36 We would like to note that the terms of
the type σ · [A × A∗] can be reduced to (σ · ∇)V ,
where V is the scalar potential.

Furthermore, one can come to the same conclu-
sions not applying to the constraints on the cre-
ation/annihilation operators (which we previously
choose for clarity and simplicity in36). It is possi-
ble to work with self/anti-self charge conjugate fields
and the Majorana anzatzen. Thus, it is the γ5 trans-
formation which distinguishes various field configura-
tions (helicity, self/anti-self charge conjugate proper-
ties etc) in the coordinate representation in the con-
sidered cases.

7. Boson Interactions.

The most general relativistic-invariant Lagrangian
for the symmetric 2nd-rank tensor is

L = −α1(∂αGαλ)(∂βG
βλ)− α2(∂αG

βλ)(∂αGβλ)−
− α3(∂αGβλ)(∂βGαλ) +m2GαβG

αβ . (99)

It leads to the equation[
α2(∂α∂

α) +m2
]
G{µν}+(α1+α3)∂{µ| (∂αG

α|ν}) = 0 .
(100)

In the case α2 = 1>0 and α1 + α3 = −1 it coincides
with Eq. (91). There is no any problem to obtain
the dynamical invariants for the fields of the spin 2
from the above Lagrangian. The mass dimension of
Gµν is [energy]1. We now present possible relativistic
interactions of the symemtric 2nd-rank tensor. The
simplest ones should be the the following ones:

Lint
(1) ∼ GµνF

µF ν , (101)

Lint
(2) ∼ (∂µGµν)F ν , (102)

Lint
(3) ∼ Gµν(∂µF ν) . (103)

The term (∂µG
α
α)Fµ vanishes due to the constraint

of tracelessness. The interaction with the notoph can
be related o the scalar-tensor theories of gravity.

It is also interesting to note that thanks to the
possible terms

V (F ) = λ1(FµF
µ) + λ2(FµF

µ)(FνF
ν) (104)

we can give the mass to the G00 component of the
spin-2 field. This is due to the possibility of the Higgs
spontaneous symmetry breaking:37

Fµ(x) =


v + ∂0χ(x)

g1

g2

g3

 , (105)

with v being the vacuum expectation value, v2 =
(FµF

µ) = −λ1/2λ2>0. Other degrees of freedom
of the 4-vector field are removed since they are the
Goldstone bosons. It was stated that “for any contin-
uous symmetry which does not preserve the ground
state, there is a massless degree of freedom which de-
couples at low energies. This mode is called the Gold-
stone (or Nambu-Goldstone) particle for the symme-
try”. As usual, the Goldstone modes should be im-
portant in giving masses to the three vector bosons.
As one can easily seen, this expression does not per-
mit an arbitrary phase for Fµ, which is only possible
if the 4-vector would be the complex one.

Next, since the interaction of fermions with no-
toph, for instance, are that of the order ∼ e2 since
the beginning (as opposed to the fermion current in-
teraction with the 4-vector potential Aµ) in the La-
grangian, it is more difficult to observe it. However,
as far as I know, the theoretical precision calculus
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in QED (the Landé factor, the anomalous magnetic
moment, the hyperfine splittings in positronium and
muonium, and the decay rate of o-Ps and p-Ps) are
near the order corresponding to the 4th-5th loops,
where the difference may appear with the experi-
ments, cf.39,40

8. Conclusions

We considered the Bargmann-Wigner formalism in
order to derive the equations for the AST fields, and
for the symmetric tensor of the 2nd rank. We in-
troduced the additional normalization scalar field in
the Bargmann-Wigner formalism in order to account
for possible physical significance of the Ogievetskii-
Polubarinov–Kalb-Ramond modes. Both the anti-
symmetric tensor fields and the 4-vector fields may
have third helicity state in the massless limit from
a theoretical viewpoint. This problem is connected
with the problem of the observability of the gauge.21

We introduced the additional symmetric matrix in
the Bargmann-Wigner expansion (γ5σµνR) in or-
der to account for the dual fields. The consider-
ation was similar to Ref.41 The problem was dis-
cussed, what are the the correct definitions of the
energy-momentum tensor and other Nöther currents
in the electromagnetic theory, the relativistic the-
ory of gravitation, the general relativity, and their
generalizations. Furthermore, we discussed the in-
teractions of notoph, photon and graviton. Proba-
bly, the notivarg should also be taken into account.
In order to analize its dynamical invariants and in-
teractions one should construct Lagrangian from the
analogs of the Riemann tensor, such as D̃µν,αβ . For
instance, the interaction notoph-graviton may give
the mass to spin-2 particles in the way similar to the
spontaneous-symmetry-breaking Higgs formalism.
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