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Abstract. The meta-pattern of the universe, first formulated by Rowlands and Diaz [2002], is a 

universal rewrite system or URS. This universal pattern finds a formulation in formal language 

theory that is centered around the fundamental semantic unit of the zero word or the zero string: 

0 = X0 , X0
#. This is realized successively in the deterministic Turing machine, Post machine, 

Finite machine with two pushdown stores, and non-deterministic linear bounded automaton. 

1.Introduction 

A universal alphabet and rewrite system, first formulated by Rowlands and Diaz [1-6], has a strong 

claim to be the fundamental meta-system in Nature, sought by Bateson among others [7]. Essentially, it 

predicates an infinitely degenerate totality zero as the state of the universe at all time, which is realized 

by an infinite succession of zero-totality alphabets, each of which ensures uniqueness by incorporating 

its predecessor. The succession is not necessarily temporal, but rather supervenient, as time is a product 

of the process, rather than an assumed component. It is a succession of zero cardinalities, rather than a 

succession of infinite ones. 

The technical details of the process, which are remarkably simple as we would expect, are described 

in many publications but are outlined in section 2 of this paper as Rewrite Rules 1.0. Essentially, there 

is only one process of transition between successive states of the universe, but it simultaneously requires 

two aspects, signified respectively by → and  ⇒, and referred to, for convenience, as ‘conserve’ and 

‘create’. A state of the universe is described by a zero-totality alphabet, in which each component is 

always accompanied by a conjugate (signified by *). The alphabet can then be concatenated either with 

one or more components of itself or ‘subalphabet’ (conserve) or with its entire self (create). The first 

aspect yields only automorphisms of the alphabet, whereas the second produces an entirely new alpha-

bet. However, the new alphabet will only be valid if it both contains the previous alphabet and also 

fulfils the requirements of ‘conserve’ in that all the new components concatenate with the new alphabet 

to produce automorphisms of that alphabet. (The automorphisms differ in producing different ordering 

of the terms, but are identical in totality.) 

We can describe the process in practical terms using symbols, though symbols are not themselves 

necessary to the process. There is no fixed start or end state, though we can define a start and end for 

our convenience, and the process is effectively a fractal. The alphabet is not fixed but extends continu-

ously, and the production rules are recreated at every stage, although there are generic similarities be-

tween the stages. The concatenation process can be conveniently described using replacement rules for 

the symbols, which are illustrated in the way that the automorphisms occur. At each stage, just one 

entirely new symbol is created, but this is accompanied by concatenations with all the previously created 



 

 

symbols. The replacement rules are determined by the requirement that the new symbol must also de-

scribe a new process – newness cannot be created by the symbol itself. Various things emerge from the 

symbolic representation and the need for it always to produce something new, including the fact that 

any symbol, other than the starting symbol R (or identity), does not concatenate with itself to produce 

R, but rather its conjugate, and that successive new symbols following R, beginning, say with A and B, 

concatenate to produce AB, which also concatenates with itself to produce the conjugate of R, which 

we represent as R*. In principle, an anticommutativity is introduced into the system to ensure that A and 

B are new and not just a new representation of R. The anticommutativity also introduces an aspect of 

closure and discreteness, not previously assumed. It additionally means that the only way to continue 

the sequence is to introduce new pairs of symbols which are anticommutative to each other but commu-

tative to all the others. The series can then continue to infinity with the uniqueness of each new symbol 

assured by the fact that it has a unique partner with which it anticommutes. In effect the alphabet con-

tinues to infinity by incorporating a generically repeating aspect. 

In addition, entropy is built into the structure in a significantly pure form in that each successive 

stage effectively doubles the alphabet for the previous one by adding a new symbol and all its concate-

nations. If the number of independent ‘microstates’ is W = 2n at level n, then taking a logarithmic func-

tion of this reveals that the entropy is simply an index of the relative level reached. In effect, entropy is 

a description of the working of the system of Nature, not an additional property requiring explanation 

[4, 6, 8]. The system is also deterministic in that no symbol repeats; each is distinct, only repeating 

generically at a higher level. 

The system has, since its first conception, been used in many applications, for example, in generating 

mathematical structures, such as the real numbers, integers, quaternions, Clifford algebra, and even 

Conway’s surreal numbers, in addition to those of mathematical logic. The mathematics that it resembles 

most is Clifford algebra, suggesting the particular significance of this algebra in the description of many 

aspects of Nature, but no mathematical structure is excluded. The only basic assumption is totality zero 

and no further assumptions need to be made to generate them. It is even possible to generate the full 

sequence of Cayley-Dickson algebras as mathematics, though the evidence suggests that the primary 

version has no need to introduce antiassociativity along with anticommutativity. In fact, the rewrite 

system as a purely natural process needs no inputs precisely because it is not antiassociative. Antiasso-

ciativity forces us to choose between options, whereas anticommutativity merely forces into the only 

available one. When time emerges as an intrinsic component of physics and all sciences based upon it, 

we see that antiassociativity would require time as well as space reversal at a fundamental level, and, in 

effect, time, because of the algebraic structure which emerges with its definition, has an associativity 

which cannot be changed. 

By contrast with mathematics, it has been shown that physics has a special structure in that its four 

basic parameters, mass, time, charge and space have the properties (real / imaginary, conserved / non-

conserved, dimensional / nondimensional) and mathematical structures (real, complex, quaternion and 

complex quaternion) required by the first four alphabets starting from R, and that these, when combined 

into the highest alphabet, lead to structures which concatenate to a complete zero, meaning that all sub-

sequent alphabets will automatically become zero without being specified. This nilpotent structure is 

ubiquitous in physics at all levels and in all natural systems defined by the conservation of energy or 

Newton’s third law of motion, or with a changing energy that can be defined by a known process. In 

effect, the principles of relativistic quantum mechanics, defined by the nilpotent structure, become the 

template for investigating all higher order systems [9-21]. A parallel system of genetics, also using four 

component units (A, T, G, C) uses exactly the same 64-part mathematics as physics (the algebra of a 

double space or space and conjugate space); while the identical algebra also leads to fundamental parti-

cle structures [4, 22-25]. 

The structures from the rewrite system are determined by characteristic mathematical patterns (in 

particular, duality, anticommutativity and symmetry-breaking, associated with the numbers 2, 3 and 5) 

which scale upward via a replacement of the original components by higher order ones, and which 

ultimately include such areas as nuclear physics, atomic structure and the Periodic Table, chemistry, 



 

 

systems (physical, biological, higher order and constructed), physiology, evolutionary and cell biology, 

and consciousness among others, as has been demonstrated in a long series of publications. Computing 

aspects include automated reasoning or AI and the complexity problem with an investigation of the p / 

np question by Marcer and Rowlands suggesting that the structured nature of the rewrite system and the 

regularity of its application must lead to an answer favouring the p (or polynomial) alternative [4, 26-

32]. A category theory application is currently under development by the present authors. 

A key area of investigation is in the theory of formal languages in computer science. Applications of 

this in current technology include programming languages such as C++, Java, xml, html, extensible 

markup languages, compiling, parsing (text mining). The aim of this paper is to reveal the formal lan-

guage aspect of the rewrite system, and to demonstrate that the pattern of this system conforms to the 

rules of its own language generation structure and that this language is recognizable by a Turing machine 

algorithm. In principle, we show that the rewrite system can simulate language defined by a set of mean-

ingful pattern units (‘words’). This language, which we identify as the language of nature, is a type 1 

(context sensitive) language.  

Current formal language theory suggests that an infinite alphabet requires a finite repeating unit and 

an infinite countable set of symbols. These are related to the duality and anticommutativity (2 and 3) of 

the rewrite system. Diaz and Rowlands have already used the rewrite to develop computer language by 

developing algebraic interpretation as infinite square roots of –1 [3], including a special unit repeated 

(quaternions), and extending to infinity in Clifford algebra, which was originally developed from the 

closed group of quaternions plus Grassmann’s infinite tensor outer product. We have already shown that 

physics, derived from the rewrite system, has such a structure, combining nilpotent fermions as a gener-

ically repeated unit, with an infinite Hilbert space derived from the Grassmann algebra. In fact the re-

write system itself is a universal version of this pattern, probably the most general that can be derived. 

The remainder of the paper shows how to construct a computer-compatible simulation of the rewrite 

system, up to a limit determined by the user. 

2.Language generation 

To produce sentences in a particular language requires knowledge of the rules of sentence formation. 

Sentient intelligence possesses this ability and computational devices simulate this ability. But the uni-

verse itself seems to exist on a simple fundamental meta-pattern (never repeated) that can be formulated 

as a language with appropriate grammar rules. This universal pattern was discovered by Peter Rowlands 

and Bernard Diaz, together with the initial form of the grammar rules [1-6]. A formulation of the gram-

mar rules of the universal rewriting system (URS) adapted to formal language theory engineered by 

Sydney Rowlands, assisted by Peter Rowlands, faithfully reproduces the same output as the original 

formulation of the grammar rules. However, this adapted and re-engineered version of the grammar 

rules introduces the universal rewrite system to the subject of formal language analysis and compilation 

theory, which might have applications for computerized simulation of the physical laws operating in the 

universe, in addition to technological consequences. The generative grammar is given in this section, 

followed by the Turing machine algorithm in section 3. It is significant that this algorithm only accepts 

zero words, as required by the universal rewrite system, but the simulated process (unlike the natural 

one) can be terminated by a halting condition set by the user. 
 

2.1 Generative Grammar in Formal Language Theory 

Grammar G = (VN, VT, P, S) where  

 

VN = set of non-terminal symbols (generally assumed to be a finite set) 

VT = set of terminal symbols (generally assumed to be a finite set) 

P = set of production rules  

S = start symbol  

 

 



 

 

 

 

2.2 Generative Grammar for the Universal Rewrite System (URS) 

Grammar G(URS) = (VN (URS), VT(URS), P(URS), S) where  

 

VN
 (URS) = {X0,  X0

#, X2i+1,
  
X2i+1

#, X2i+2,
  
X2i+2

#
 

| i ≥ 0 and i ∈ Z+} (a countably infinite set) 

VT(URS) = {R0,  R0
#, R2i+1, R2i+1

#, R2i+2, R2i+2
#

 

| i ≥ 0 and i ∈ Z+} (a countably infinite set) 

P(URS) = { 

 

       (0) create first new symbol (assume a nonzero symbol): S → X0,   

       (1) conserve first zero totality: X0→ X0, X0
#  

       (2) conserve zero totality: X0, X0
# → X0, X0, X0

# 

       (3) conserve zero totality: X0, X0
# → X0

#, X0, X0
#,  

       (4) create a new symbol: X0, X0
#, X0, X0

# → X0,  X0
#, X2i+1, X2i+1

# 

       (5) creation rule with terminal symbols, VT: X0, X0
#, X2i+1, X2i+1

#
 → R0, R0

#, R2i+1, R2i+1
#

 

  

}  

 

S = start symbol  

 

How to apply the rules:  

 

(0) create S→ X0
                                             

 
(1) conserve X0→ X0, X0

#
  

 

(2) conserve X0, X0
# → X0 , X0 , X0

#   
conserve (3) into conserve (2) X0, (X0, X0

#) → X0, (X0
#, X0, X0

#) 
                                

 
(4) create X0, X0

#, X0, X0
# → X0 , X0

#, X2i+1 , X2i+1
#

                 

 

(5) create X0, X0
#, X2i+1, X2i+1

#
  → R0, R0

#, R2i+1, R2i+1
#

 
         

 
 

The language generated by the grammar URS, L(URS) is the set of words {w1 | w = 𝑅0, 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

#
 

and w2 = 𝑅0, 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1

# 𝑅2𝑖+2
#

} derived from the infinite product: 

 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1) , i ∈ Z+.  

 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1) in expanded form becomes the word w1  

 

𝑅0𝑅0𝑅0𝑅2𝑖+1𝑅0
#𝑅0𝑅0

#𝑅2𝑖+1 
 

or more familiarly rearranged as  

 

𝑅0, 𝑅0
#, 𝑅2𝑖+1, 𝑅2𝑖+1

#
 

 

assuming the symbols operate as though they are quaternions following the quaternion multiplication 

rules where 𝑅0 the identity, 𝑅0
#
  minus identity, 𝑅2𝑖+1 quaternion i, 𝑅2𝑖+1

#
 quaternion –i 

 

𝑅0, 𝑅0= 𝑅0 

𝑅0
#, 𝑅0 = 𝑅0

#
 

𝑅0, 𝑅2𝑖+1= 𝑅2𝑖+1 



 

 

𝑅0
#, 𝑅2𝑖+1= 𝑅2𝑖+1

#
 

 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) = in expanded form becomes the word w2  

 
𝑅0𝑅0𝑅0𝑅0𝑅0𝑅2𝑖+2𝑅0𝑅2𝑖+1𝑅0𝑅0𝑅2𝑖+1𝑅2𝑖+2𝑅0

#𝑅0𝑅0𝑅0
#𝑅0𝑅2𝑖+2𝑅0

#𝑅2𝑖+1𝑅0𝑅0
#𝑅2𝑖+1𝑅2𝑖+2 

 

or more familiarly rearranged as  

 

𝑅0, 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

 

assuming the symbols operate as though they are quaternions following the quaternion multiplication 

rules where 𝑅0 the identity, 𝑅0
#
  minus identity, 𝑅2𝑖+1 quaternion i, 𝑅2𝑖+1

#
 quaternion –i, 𝑅2𝑖+2 quaternion  

j, 𝑅2𝑖+2
#

 quaternion –j, 𝑅2𝑖+1𝑅2𝑖+2 quaternion ij, 𝑅2𝑖+1𝑅2𝑖+2
#
 quaternion –ij 

 

𝑅0, 𝑅0, 𝑅0= 𝑅0 

𝑅0
#, 𝑅0, 𝑅0 = 𝑅0

#
 

𝑅0, 𝑅2𝑖+1, 𝑅0
 = 𝑅2𝑖+1 

𝑅0
#, 𝑅2𝑖+1, 𝑅0 = 𝑅2𝑖+1

#
 

𝑅0, 𝑅0, 𝑅2𝑖+2= 𝑅2𝑖+2 

𝑅0
#, 𝑅0, 𝑅2𝑖+2 =  𝑅2𝑖+2

#
 

𝑅0, 𝑅2𝑖+1, 𝑅2𝑖+2 = 𝑅2𝑖+1, 𝑅2𝑖+2 

𝑅0
#, 𝑅2𝑖+1, 𝑅2𝑖+2 = 𝑅2𝑖+1𝑅2𝑖+2

#
 

 

Instead of continuing the product to infinity, as we propose that Nature does in principle, we can 

choose to adapt this product to a real machine by terminating the product at some particular power n of 

the order 2n in the URS, with the help of two functions of n: i(n) and l(n). i(n) labels each power n  and 

n + 1 in the order 2n of the URS with the same number i(n) of complete anti-commutative cycles and 

l(n) numerically labels each conjugate pair symbol, using 2i+1 (= i in a quaternion representation) in 

power n and 2i + 2 (= j in a quaternion representation) in power n+1 with the same number l(n), exclud-

ing the conjugate unit pair R0, R0
# at power n = 1 where both i(n) and l(n) = 0 [see table below]. 

 

i(n)=
1

4
(2𝑛 − 3 − (−1)𝑛)   

and 

l(n) = 
1

4
(2𝑛 − 1 − (−1)𝑛−1)  

 

where i, l ∈ {0, 1, 2 3, …} and n ∈ {1, 2, 3, …}.  

Additionally, for every power n in each order 2n of the URS there exist (n — 1)/2 anti-commutative sets 

that alternate between complete (for n odd, 2i+1 (quaternion i) and 2i + 2 (quaternion  j)) and incomplete 

(for n even, 2i+1 (quaternion i)) anticommutative sets. 

 

Here is a table explaining the progression of the URS through increasing values of n: 

 

 

 

 

 

 



 

 

 

 

Power of URS n Order of URS  2n i(n) l(n)     
 

Number of quaternion 

cycles as a function 

of n, f(n)  

1 2 0 0 0 

2 4 0 1 0.5 

3 8 1 1 1 

4 16 1 2 1.5 

5 32 2 2 2 

6 64 2 3 2.5 

7 128 3 3 3 

8 256 3 4 3.5 

9 512 4 4 4 

10 1024 4 5 4.5 

11 2048 5 5 5 

 

 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) = 𝑅0, 𝑅0

#𝑅2𝑖+1, 𝑅2𝑖+1
# 𝑅2𝑖+2, 𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
#
 

 
and  
 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1) = 𝑅0, 𝑅0

#, 𝑅2𝑖+1, 𝑅2𝑖+1
#

 

 

Example of ∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) and ∏

𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅0, 𝑅2𝑖+1) in operation in the URS: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
Order of URS  2n Tensor-like Product  

21 (R0, R0
#) 

22 

∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1) 

23 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

24 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2)∏

𝑖=1

1

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1) 

25 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2)∏

𝑖=1

1

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

26 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2)∏

𝑖=1

1

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

∏
𝑖=2

2

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1) 

27 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2)∏

𝑖=1

1

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

∏
𝑖=2

2

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

28 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2)∏

𝑖=1

1

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

∏
𝑖=2

2

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

∏
𝑖=3

3

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1) 

29 
∏
𝑖=0

0

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2)∏

𝑖=1

1

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

∏
𝑖=2

2

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

∏
𝑖=3

3

(𝑅0, 𝑅0
#
)(𝑅0, 𝑅2𝑖+1)(𝑅0, 𝑅2𝑖+2) 

 

 

These two possibilities will be outlined, with alternative state diagrams, in section 3. Here, we use 

the idea that one word represents an infinite set of words of that type of expression as a function of the 



 

 

variable i [33]. The following table shows a comparison of the natural rules (Rewrite Rules 1.0) and 

those of the simulation (Rewrite Rules 2.0). 

 

 

Rewrite Rules 1.0 Rewrite Rules 2.0 

create a new symbol: (X,X*)(X,X*) ⇒ 

(X,X*Y,Y*) 

conserve zero totality: X(X,X*) → (X,X*) 

                                     X*(X,X*) → (X,X*) 

(0) create first new symbol (assume a nonzero sym-
bol): S → X0,   
(1) conserve first zero totality: X0→ X0, X0

#  
(2) conserve zero totality: X0, X0

# → X0, X0, X0
# 

(3) conserve zero totality: X0, X0
# → X0

#, X0, X0
#,  

(4) create a new symbol: X0, X0
#, X0., X0

# → X0,  X0
#, 

X2i+1, X2i+1
# 

(5) creation rule with terminal symbols, VT: X0, X0
#, 

X2i+1, X2i+1
#

 → R0, R0
#, R2i+1, R2i+1

#
 

 

 (0) create S→ X0
                                             

 
(1) conserve X0→ X0, X0

#
  

 
(2) conserve X0, X0

# → X0 , X0 , X0
#   

conserve (3) into conserve (2) X0, (X0, X0
#) → 

X0, (X0
#, X0, X0

#) 
                                         

 
(4) create X0, X0

#, X0, X0
# → X0 , X0

#, X2i+1 , X2i+1
#

                 

 
(5) create X0, X0

#, X2i+1, X2i+1
#

  → R0, R0
#, R2i+1, R2i+1

#
 
         

(0) 0 → (R)                                                              

(1) (R) → (RR*)                                                      

(2) R(RR*) → (RR*)                                               

(3) R*(RR*) → (RR*)                                            

(4) (RR*)(RR*) ⇒ (RR*, AA*)                               

(2) (R,A)(RR*, AA*) → (RR*, AA*)                      

(3) (R*, A*)(RR*, AA*) → ( RR*, AA*)                 

(4) (RR*, AA*)(RR*, AA*) ⇒ (RR*, AA*, BB* 

ABAB*)                                                             

(2) (R, A, B) (RR*, AA*, BB*, ABAB**) → 

(RR*, AA*, BB*,ABAB*)                                           

(3) (R*, A*, B*) (RR*, AA*, BB*, ABAB*) → 

(RR*, AA*, BB*,ABAB*)                                 

(4) (RR*, AA*, BB*, ABAB*)(RR*, AA*, BB*, 

ABAB*) 

⇒ (RR*, AA*, BB*, ABAB*, CC*, ACAC*, 

BCBC*, ABCABC*)                                         
 

and so on ….. 

(0) S → X0                                                                                           
(1) →X0, X0

#                                                              
(2) → X0, X0, X0

#                                                         
(3) into (2) → X0, X0

#X0, X0
#                                                   

(4) → X0, X0
#X1, X1

#                                                                                
(2) → X0, X0, X0

#, X1, X1, X1
#                                                         

(3) into (2) → X0, X0
#X0, X0

#X1, X1
#X1, X1

#                                                  
(4) → X0, X0

#X1, X1
#X2, X2

#X1X2, X1X2
#                                     

(2) → X0, X0, X0
#, X1, X1, X1

#, X2, X2, X2
#, X1, X2, 

X1, X2, X1, X2
#                             

(3) into (2) → X0,X0
#X0, X0

#X1, X1
#X1, X1

#X2, 
X2

#X2, X2
#X1X2, X1X2

#X1X2, X1X2
#                                                                                       

(4) → X0, X0
#X1, X1

#X2, X2
#X1X2, X1X2

#X3, 
X3

#X1X3, X1X3
#X2X3, X2X3

#X1X2X3, X1X2X3
#                                      

 
 
 
and so on unless halted by using rule (5) ….           

 

 



 

 

 

number of symbols per order in URS = 2n 

number of words per order in the URS = 2n-1 

3.Language recognition 

To understand sentences in a particular language requires knowledge of the rules of sentence formation. 

Sentient intelligence possesses this ability and computational devices simulate this ability. In the Row-

lands-Diaz Rewrite System there do not exist choices – the URS recognized by a Turing Machine over 

an infinite alphabet moves in only one direction. The repeating part of the pattern of the Rowlands-Diaz 

Rewrite System is caused by anticommutativity which involves the symmetries of the number 3 or 3-

dimensionality. This is the reason for the existence of the repetition in the infinite sequence of square 

roots of –1. 

 

Formal Definition of a General Turing Machine Tm = (Q, Σ, Γ, B, δ, q0, F) where 

 

Q = set of states  

Σ = a finite set of alphabet symbols (input alphabet)  

Γ = finite set of auxiliary alphabet symbols (tape alphabet)  

δ = transition function 

q0 = start state  

F = set of accept states  

 

A procedure that recognises the language of the URS is a Turing Machine composed of two Turing 

machines, one a subroutine of the other: Tm2 = (Q2, Σ, Γ, δ2, q0, F2) is a subroutine of  

Tm1 = (Q1, Σ, Γ, δ1, q0, F1).  

 

Tm1 = (Q1, Σ, Γ, δ1, q0, F1) 

 

Q1 = {q0, q1, q2, q3, q4, q5, q6, q7, q8} 

Σ = VT(URS) = {R0,  R0
#, R2i+1, R2i+1

#, R2i+2, R2i+2
#
 
| i ≥ 0 and i ∈ Z+} (a countably infinite set) 

Γ = {r0,  r0
#, r2i+1, r2i+1

#, r2i+2, r2i+2
#
 
| i ≥ 0 and i ∈ Z+} (a countably infinite set) 

δ1 = Q1 × Σ → Q1 × Γ – {B} × {L, R} 

q0 = start state  

F1 = {q8} 

  

input word w1 =𝑅0, 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

 

Transition Function δ1 

 

δ1(q0, 𝑅0) = (q1, r0, R) 

δ1(q1, 𝑅0
#
) = (q2, r0

#, R) 

δ1(q2, 𝑅2𝑖+1) = (q3, r2i+1, R) 

δ1(q3, 𝑅2𝑖+1
#

) = (q4, r2i+1
#, R) 

δ1(q4, 𝑅2𝑖+2) = (q5, r2i+2, R) 

δ1(q5, 𝑅2𝑖+2
# ) = (q6, r2i+2

#, R) 

δ1(q6, 𝑅2𝑖+1𝑅2𝑖+2) = (q7, r2i+1r2i+2, R)  

δ1(q7,𝑅2𝑖+1𝑅2𝑖+2
#) = (q8, 𝑟2𝑖+1𝑟2𝑖+2

#,R) 

i ← i + 1 

 



 

 

It should be understood that the transition function in the formal definition of the Turing machine 

(the deterministic version and the nondeterministic version) is a partial function. There exist ordered 

pairs (state, input symbol) in the domain of the transition function Q × Σ that are not defined or are not 

equal to any ordered triples (state, output symbol, move). This indicates that either the Turing machine 

rejects or loops on these ordered pairs and hence the unsolvable halting problem is revealed through the 

existence of these undefined pairs. The domain Q × Σ is a Cartesian Product of the two sets Q and Σ 

which is defined as the set of all (state, input symbol) ordered pairs where state is in Q and symbol is in 

Σ. There only exist a certain number of such ordered pairs that are defined as having an output action. 

The transition functions for the Turing machines in this paper only include those (state, input symbol) 

ordered pairs that are defined as equal to (state, output symbol, move) ordered triples as their corre-

sponding output definition.  

state diagram:  

     
 

state table: 

 

 𝑅0 𝑅0
# 𝑅2𝑖+1 𝑅2𝑖+1

#  𝑅2𝑖+2 𝑅2𝑖+2
#  𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

# 

q0 q1 undefined undefined undefined undefined undefined undefined undefined 

q1 undefined q2 undefined undefined undefined undefined undefined undefined 

q2 undefined undefined q3 undefined undefined undefined undefined undefined 

q3 undefined undefined undefined q4 undefined undefined undefined undefined 

q4 undefined undefined undefined undefined q5 undefined undefined undefined 

q5 undefined undefined undefined undefined undefined q6 undefined undefined 

q6 undefined undefined undefined undefined undefined undefined q7 undefined 

q7 undefined undefined undefined undefined undefined undefined undefined q8 

 

 

 

 

 



 

 

 

symbol table  

 

 𝑅0 𝑅0
# 𝑅2𝑖+1 𝑅2𝑖+1

#  𝑅2𝑖+2 𝑅2𝑖+2
#  𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

# 

q0 𝑅0 undefined undefined undefined undefined undefined undefined undefined 

q1 undefined 𝑅0
# undefined undefined undefined undefined undefined undefined 

q2 undefined undefined 𝑅2𝑖+1 undefined undefined undefined undefined undefined 

q3 undefined undefined undefined 𝑅2𝑖+1
#  undefined undefined undefined undefined 

q4 undefined undefined undefined undefined 𝑅2𝑖+2 undefined undefined undefined 

q5 undefined undefined undefined undefined undefined 𝑅2𝑖+2
#  undefined undefined 

q6 undefined undefined undefined undefined undefined undefined 𝑅2𝑖+1𝑅2𝑖+2 undefined 

q7 undefined undefined undefined undefined undefined undefined undefined 𝑅2𝑖+1
# 𝑅2𝑖+2

#  

 

 

 

Tm2 = (Q2, Σ, Γ, δ2, q0, F2) 

 

Q2 = {q0, q1, q2, q3, q4} 

Σ = VT(URS) = {R0,  R0
#, R2i+1, R2i+1

#| i ≥ 0 and i ∈ Z+} (a countably infinite set) 

Γ = {r0,  r0
#, r2i+1, r2i+1

#| i ≥ 0 and i ∈ Z+} (a countably infinite set) 

δ2 = Q2 × Σ → Q2 × Γ – {B} × {L, R} 

q0 = start state  

F2 = {q4} 

 

input word w2 =𝑅0, 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

#
 

 

Transition Function δ2 

 

δ2 (q0, 𝑅0) = (q1, r0, R) 

δ2 (q1, 𝑅0
#
) = (q2, r0

#, R) 

δ2(q2, 𝑅2𝑖+1) = (q3, r2i+1, R) 

δ2(q3, 𝑅2𝑖+1
#

) = (q4, r2i+1
#, R) 

i ← i + 1 

 

state diagram: 



 

 

                     
 

state table: 

 

 𝑅0 𝑅0
# 𝑅2𝑖+1 𝑅2𝑖+1

#  

q0 q1 undefined  undefined undefined 

q1 undefined q2 undefined undefined 

q2 undefined undefined q3 undefined 

q3 undefined undefined undefined q4 

 

 

symbol table  

 

 𝑅0 𝑅0
# 𝑅2𝑖+1 𝑅2𝑖+1

#  

q0 𝑅0 undefined undefined undefined 

q1 undefined 𝑅0
# undefined undefined 

q2 undefined undefined 𝑅2𝑖+1 undefined 

q3 undefined undefined undefined 𝑅2𝑖+1
#  

 

 

 

Performance of a Turing Machine Tm that recognises the URS  

 

A Turing machine that recognises the URS Tm alternates between Tm2 and Tm1 in an infinite loop. 

The length of the two input words of the URS w1 and w2 are |w1| = 4 and |w2| = 8. The Turing machine 

recognises the universal rewrite system by rewriting every square that has an input alphabet symbol on 



 

 

it with a corresponding symbol from the set of output symbols. The process proceeds for an infinite 

succession of alternations between these types of words w1 and w2 in the URS language. 

 

input word x written in input alphabet Σ → input word x rewritten in output alphabet Γ 

 

Tm2 subroutine 

 

δ2(q0, 𝑅0) 

 

𝑅0 𝑅0
#
 𝑅2𝑖+1 𝑅2𝑖+1

#
 

           ↑  

   

(q1, r0, R) 

 

r0 𝑅0
#
 𝑅2𝑖+1 𝑅2𝑖+1

#
 

                      ↑  

 

δ2(q1, 𝑅0
#
) 

 

r0 𝑅0
#
 𝑅2𝑖+1 𝑅2𝑖+1

#
 

                           ↑  

  

(q2, r0
#, R) 

 

r0 r0
# 𝑅2𝑖+1 𝑅2𝑖+1

#
 

                                            ↑ 

 

δ2(q2, 𝑅2𝑖+1) 

 

r0 r0
# 𝑅2𝑖+1 𝑅2𝑖+1

#
 

                                            ↑  

  

(q3, r2i+1, R) 

 

r0 r0
# r2i+1 𝑅2𝑖+1

#
 

                       ↑  

 

δ2(q3, 𝑅2𝑖+1
#

) 

 

r0 r0
# r2i+1 𝑅2𝑖+1

#
 

                                                                ↑  

 

 

 



 

 

(q4, r2i+1
#) 

    

r0 r0
# r2i+1 r2i+1

# 

                                                                  ↑  

 

Tm1 

 

δ1(q0, 𝑅0) 

 

𝑅0 𝑅0
#
 𝑅2𝑖+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

           ↑  

 

(q1, r0, R) 

 

r0 𝑅0
#
 𝑅2𝑖+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                     ↑ 

 

δ1(q1, 𝑅0
#
) 

 

r0 𝑅0
#
 𝑅2𝑖+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                      ↑ 

 

(q2, r0
#, R) 

 

r0 r0
# 𝑅2𝑖+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                       ↑ 

 

δ1(q2, 𝑅2𝑖+1) 

 

r0 r0
# 𝑅2𝑖+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                       ↑ 

 

(q3, r2i+1, R) 

 

r0 r0
# r2i+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                                         ↑ 

 

 

 

 



 

 

δ1(q3, 𝑅2𝑖+1
#

) 

 

r0 r0
# r2i+1 𝑅2𝑖+1

#
 𝑅2𝑖+2 𝑅2𝑖+2

#
 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                                         ↑ 

 

(q4, r2i+1
#, R) 

 

r0 r0
# r2i+1 r2i+1

# 𝑅2𝑖+2 𝑅2𝑖+2
#

 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2
#
 

                                                                             ↑  

 

δ1(q4, 𝑅2𝑖+2) 

 

r0 r0
# r2i+1 r2i+1

# 𝑅2𝑖+2 𝑅2𝑖+2
#

 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2
#
 

                                                                             ↑  

 

(q5, r2i+2, R) 

 

r0 r0
# r2i+1 r2i+1

# r2i+2 𝑅2𝑖+2
#

 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2
#
 

                                                                          ↑                   

 

δ1(q5, 𝑅2𝑖+2
#

) 

 

r0 r0
# r2i+1 r2i+1

# r2i+2 𝑅2𝑖+2
#

 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2
#
 

                                                                         ↑                  

  

(q6, r2i+2
#, R) 

 

r0 r0
# r2i+1 r2i+1

# r2i+2 r2i+2
# 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                ↑                
 
δ1(q6, 𝑅2𝑖+1𝑅2𝑖+2) 

 

r0 r0
# r2i+1 r2i+1

# r2i+2 r2i+2
# 𝑅2𝑖+1𝑅2𝑖+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                                                                               ↑                     

 

 

 

 

 



 

 

(q7, r2i+1r2i+2, R)  

 

r0 r0
# r2i+1 r2i+1

# r2i+2 r2i+2
# r2i+1r2i+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                                                                                                   ↑  

 

δ1(q7, 𝑅2𝑖+1
# 𝑅2𝑖+2

# ) 

 

r0 r0
# r2i+1 r2i+1

# r2i+2 r2i+2
# r2i+1r2i+2 𝑅2𝑖+1𝑅2𝑖+2

#
 

                                                                                                                   ↑  

 

(q8, r2i+1
#r2i+2

#, R) 

 

r0 r0
# r2i+1 r2i+1

# r2i+2 r2i+2
# r2i+1r2i+2 𝑟2𝑖+1𝑟2𝑖+2

# 

                                                                                                                   ↑ 

 

4.Two equivalent Post machines 

There exist two other machines which are equivalent in power, i.e. recognising the same set of words or 

language, to the Turing machine. These are the Post machine and the Finite machine with two pushdown 

stores [34]. In the next sections we will generate the flow diagrams for the URS as recognised by these 

two machines for the two possible input word patterns. 

4.1 Formal Definition of a Post Machine  

A Post Machine M over Σ ∪ Γ ∪ {B} is a flow-diagram with one variable x, which may have as a value 
any word over Σ ∪ Γ ∪ {B} ∪ {!}, where! is a special auxiliary symbol. Each statement in the flow 
diagram has one of the following forms:  

START statement (exactly one) 

x = word w 

head(x): gives the head (leftmost letter) of the word x  

tail(x): gives the tail of the word x (that is, x with the leftmost letter removed) 

σ ̇ x:  concatenates the letter σ and the word x  

The idea behind how the Post machine operates in a few lines: 

START:x = complete word w in input alphabet Σ ! →                                                                                    

x = tail(x) of word w in input alphabet Σ ! head(x) of word w in output alphabet Γ →                              

ACCEPT: x = ! complete word w in output alphabet Γ 

The Post Machine M is an iterative simulation of the universal rewrite system, compared to the recursive 
simulation of the Turing machine. 

As already stated, equivalence in power means describing the same language or the same set of words. 

The set of words over the infinite alphabet Σ that the Post Machine M1 accepts is  

accept(M1) = {𝑟0, 𝑟0
#𝑟2𝑖+1, 𝑟2𝑖+1

# 𝑟2𝑖+2, 𝑟2𝑖+2
# 𝑟2𝑖+1𝑟2𝑖+2, 𝑟2𝑖+1𝑟2𝑖+2

# | i ≥ 0 and i ∈ 𝒩}. 

reject(M1) = Σ* - accept(M1) 

 

loop(M1) = ∅  

 



 

 

START 

x ← x! 

x = 𝑅0𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

# 𝑅2𝑖+2𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
! 

 

head(x) = 𝑅0 

x = 𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

# 𝑅2𝑖+2𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
! 

x ← x𝑟0 

x = 𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

# 𝑅2𝑖+2𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
!𝑟0 

head(x) = 𝑅0
#
 

x = 𝑅2𝑖+1𝑅2𝑖+1
# 𝑅2𝑖+2𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0 

x ← x𝑟0
# 

x = 𝑅2𝑖+1𝑅2𝑖+1
# 𝑅2𝑖+2𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0𝑟0

# 

head(x) = 𝑅2𝑖+1 

x = 𝑅2𝑖+1
# 𝑅2𝑖+2𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
#𝑟0

# 

x ← x𝑟2𝑖+1 

x = 𝑅2𝑖+1
# 𝑅2𝑖+2𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0𝑟0

#𝑟2𝑖+1 

head(x) = 𝑅2𝑖+1
#

 

x = 𝑅2𝑖+2𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
!𝑟0𝑟0

#𝑟2𝑖+1 

x ← x𝑟2𝑖+1
#  

x = 𝑅2𝑖+2𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
#  

 

head(x) = 𝑅2𝑖+2 

x = 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
#  

x ← x𝑟2𝑖+2 

x = 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
# 𝑟2𝑖+2 

head(x) = 𝑅2𝑖+2
#

 

x = 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
# 𝑟2𝑖+2 

x ← x𝑟2𝑖+2
#  

x = 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
# 𝑟2𝑖+2𝑟2𝑖+2

#  

head(x) = 𝑅2𝑖+1𝑅2𝑖+2 

x = 𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
# 𝑟2𝑖+2𝑟2𝑖+2

#  

x ← x𝑟2𝑖+1𝑟2𝑖+2 

x = 𝑅2𝑖+1𝑅2𝑖+2
#
!𝑟0𝑟0

#𝑟2𝑖+1𝑟2𝑖+1
# 𝑟2𝑖+2𝑟2𝑖+2

# 𝑟2𝑖+1𝑟2𝑖+2 

head(x) = 𝑅2𝑖+1𝑅2𝑖+2
#
 

x = !𝑟0𝑟0
#𝑟2𝑖+1𝑟2𝑖+1

# 𝑟2𝑖+2𝑟2𝑖+2
# 𝑟2𝑖+1𝑟2𝑖+2 

x ← x𝑟2𝑖+1
# 𝑟2𝑖+2

#  

x = !𝑟0𝑟0
#𝑟2𝑖+1𝑟2𝑖+1

# 𝑟2𝑖+2𝑟2𝑖+2
# 𝑟2𝑖+1𝑟2𝑖+2𝑟2𝑖+1𝑟2𝑖+2

# 

ACCEPT 



 

 

 

The set of words over the infinite alphabet Σ that the Post Machine M2 accepts is  



 

 

accept(M2) = {𝑟0𝑟0
#𝑟2𝑖+1𝑟2𝑖+1

#  | i ≥ 0 and i ∈ 𝒩}. 

reject(M2) = Σ* - accept(M1) 

 

loop(M2) = ∅  

START  

x ← x! 

x = 𝑅0𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

#
! 

 

head(x) = 𝑅0 

x = 𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

#
! 

x ← x𝑟0 

x = 𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

#
!𝑟0 

head(x) = 𝑅0
#
 

x = 𝑅2𝑖+1𝑅2𝑖+1
#

!𝑟0 

x ← x𝑟0
# 

x = 𝑅2𝑖+1𝑅2𝑖+1
#

!𝑟0𝑟0
# 

head(x) = 𝑅2𝑖+1 

x = 𝑅2𝑖+1
#

!𝑟0𝑟0
# 

x ← x𝑟2𝑖+1 

x = 𝑅2𝑖+1
#

!𝑟0𝑟0
#𝑟2𝑖+1 

head(x) = 𝑅2𝑖+1
#

 

x = !𝑟0𝑟0
#𝑟2𝑖+1 

x ← x𝑟2𝑖+1
#  

x = !𝑟0𝑟0
#𝑟2𝑖+1𝑟2𝑖+1

#  

ACCEPT 



 

 

 



 

 

5.Two equivalent finite machines with two pushdown stores 

5.1 Formal Definition of a Finite Machine with Two Pushdown Stores   

A Finite Machine with Two Pushdown Stores M over Σ ∪ Γ ∪ {B} is a flow-diagram with one variable 
x, which may have as a value any word over Σ ∪ Γ ∪ {B}. Each statement in the flow diagram has one 
of the following forms: 

START statement (exactly one) 

x = word w 
head(x): gives the head (leftmost letter) of the word x  
tail(x): gives the tail of the word x (that is, x with the leftmost letter removed) 
σ ̇ x:  concatenates the letter σ and the word x  
Λ = empty word (word with no letters)  
y1 = pushdown store 1  
y2 = pushdown store 2  

The idea behind how the Finite Machine with Two Pushdown Stores operates in a few lines: 

START: x = complete word w in input alphabet Σ and y1 = Λ and y2 = Λ →                                                           

x = tail(x) of word w in input alphabet Σ and y1 ← head(x) of word w in output alphabet Γ and y2 ←  

x = tail(x) of word w in input alphabet Σ →                                                                                                             

ACCEPT: x = Λ and y1 = complete word w in output alphabet Γ and y2 = Λ  

START 

x = 𝑅0, 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

y1 = Λ and y2 = Λ   

head(x) = 𝑅0 

x = tail(x) = 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

y1 ← 𝑟0y1      and y2 ← x = tail(x) 

y1 = 𝑟0  and  y2 = 𝑅0
#𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

head(x) = 𝑅0
#
 

x = tail(x) = 𝑅2𝑖+1, 𝑅2𝑖+1
# 𝑅2𝑖+2, 𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
#
 

y1 ← 𝑟0
#y1 and y2 ← x = tail(x)  

y1 = 𝑟0
#, 𝑟0  and y2 = 𝑅2𝑖+1, 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
   

head(x) = 𝑅2𝑖+1 

x = tail(x) = 𝑅2𝑖+1
# 𝑅2𝑖+2, 𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
#
   

y1 ← 𝑟2𝑖+1y1.   and y2 ← x = tail(x)  

y1 = 𝑟2𝑖+1𝑟0
#, 𝑟

0
  and y2 = 𝑅2𝑖+1

# 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
   

head(x) = 𝑅2𝑖+1
#

 

x = tail(x) = 𝑅2𝑖+2, 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

y1 ← 𝑟2𝑖+1
# y1 and y2 ← x = tail(x)  

y1 = 𝑟2𝑖+1
# , 𝑟2𝑖+1𝑟0

#, 𝑟
0
and y2 = 𝑅2𝑖+2, 𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
#
   

head(x) = 𝑅2𝑖+2 

x = tail(x) = 𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
 

y1 ← 𝑟2𝑖+2y1 and y2 ← x = tail(x) 

y1 = 𝑟2𝑖+2𝑟2𝑖+1
# , 𝑟2𝑖+1𝑟0

#, 𝑟
0
    and y2 = 𝑅2𝑖+2

# 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
#
   



 

 

head(x) = 𝑅2𝑖+2
#

 

x = tail(x) = 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
#
 

y1 ← 𝑟2𝑖+2
# y1 and y2 ← x = tail(x) 

y1 = 𝑟2𝑖+2
# , 𝑟

2𝑖+2
𝑟2𝑖+1
# , 𝑟2𝑖+1𝑟0

#, 𝑟
0
    and y2 = 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

#
   

head(x) = 𝑅2𝑖+1𝑅2𝑖+2 

x = tail(x) = 𝑅2𝑖+1𝑅2𝑖+2
#
 

y1 ← 𝑟2𝑖+1𝑟2𝑖+2y1 and y2 ← x = tail(x) 

y1 = 𝑟2𝑖+1𝑟2𝑖+2𝑟2𝑖+2
# , 𝑟

2𝑖+2
𝑟2𝑖+1
# , 𝑟2𝑖+1𝑟0

#, 𝑟
0
    and y2 = 𝑅2𝑖+1𝑅2𝑖+2

#
 

head(x) = 𝑅2𝑖+1𝑅2𝑖+2
#
   

x = tail(x) = Λ  

y1 ← 𝑟2𝑖+1𝑟2𝑖+2
#y1 and y2 ← x = tail(x) 

y1 = 𝑟2𝑖+1𝑟2𝑖+2
#, 𝑟2𝑖+1𝑟2𝑖+2𝑟2𝑖+2

#
, 𝑟
2𝑖+2

𝑟2𝑖+1
# , 𝑟2𝑖+1𝑟0

#, 𝑟
0
    and y2 = Λ  

ACCEPT  

x = Λ  

y1 = 𝑟2𝑖+1𝑟2𝑖+2
#, 𝑟2𝑖+1𝑟2𝑖+2𝑟2𝑖+2

#
, 𝑟
2𝑖+2

𝑟2𝑖+1
# , 𝑟2𝑖+1𝑟0

#, 𝑟
0
 and y2 = Λ  



 

 

 



 

 

START 

x = 𝑅0𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

#
 

y1 = Λ and y2 = Λ   

head(x) = 𝑅0 

x = tail(x) = 𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

#
 

y1 ← 𝑟0y1     and   y2 ← tail(x)  

y1 = 𝑟0  and  y2 = 𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

#
 

head(x) = 𝑅0
#
 

x = tail(x) = 𝑅2𝑖+1𝑅2𝑖+1
#

 

y1 ← 𝑟0
#y1 and y2 ← tail(x)  

y1 = 𝑟0
#𝑟

0
  and y2 =  𝑅2𝑖+1𝑅2𝑖+1

#
 

head(x) = 𝑅2𝑖+1 

x = tail(x) = 𝑅2𝑖+1
#

 

y1 ← 𝑟2𝑖+1y1.    and   y2 ← tail(x)  

y1 = 𝑟2𝑖+1𝑟0
#𝑟

0
 and y2 = 𝑅2𝑖+1

#
 

head(x) = 𝑅2𝑖+1
#

 

x = tail(x) = Λ  

y1 ← 𝑟2𝑖+1
# y1.           and   y2 ← tail(x)  

y1 = 𝑟2𝑖+1
# 𝑟2𝑖+1𝑟0

#
𝑟
0
  and y2 = Λ  

ACCEPT  

x = Λ  

y1 = 𝑟2𝑖+1
# 𝑟2𝑖+1𝑟0

#
𝑟
0
  and  y2 = Λ  



 

 

 



 

 

6.Linear Bounded Automaton 

 

Any set of input words x accepted by a non-deterministic linear bounded automaton (LBA) is ac-

cepted by a deterministic Turing Machine [35]. A linear bounded automaton (lba) is a nondeterministic 

single tape Turing Machine that never leaves the cells on which the input symbols were placed. A non-

deterministic lba’s computational space requirement can be a quadratic function of the length of the 

input word x: c2|x|2 + c1|x| + c0, where c2, c1, c0 are real number constants. Intermediate sentential 

forms are never longer than the length of the input word x. This means that the maximal amount of tape 

space required for an lba to compute the input word is a bounded function of the length of the input 

word |x|. This is less than the amount of tape required for the deterministic Turing machine for the same 

word. The exponential amount of tape required by the deterministic Turing machine was shown earlier 

in the tape diagrams of section 3. As mentioned before, it is a known result that the linear bounded 

automaton and the deterministic Turing machine accept the same languages [35]. Whether a machine is 

deterministic or nondeterministic is decided by whether the output for each input is unique or nonunique. 

The crucial difference between the nondeterministic lba and the deterministic lba is that the deterministic 

machine is programmed by a transition function and the nondeterministic machine is programmed by a 

transition relation. The differences are down to the distinctions between a function and a relation. A 

function has a unique output for each input. A relation has more than one output for each input. 

 

Formal Definition of Nondeterministic Linear Bounded Automaton (lba)  

 

lba = (Q, Σ, Γ, δ, q0, F) where 

 

Q = set of states 

Σ = set of input symbols ⊆ Γ 

Γ = set of output symbols plus left end marker £ and right end marker $ 

Δ = Q × (Γ \ {£, $}) → 2Q × Γ x {-, +, 0}  

(2Q × Γ x {-, +, 0} = set of subsets of Q × Γ x {-, +, 0} where {-} means move left, {+} means move right, 

{0} means do not move) 

q0 = start state 

F = set of final states  

 

Formal Definition of Deterministic Linear Bounded Automata (lba) that accepts the URS language  

 

lba = (Q, Σ, Γ, δ, q0, F) where 

Q = {q0, q1, q2, q3, q4, qf} 

Σ = {a, b, c} ⊆ Γ  

Γ = {a, b, c, A, B, C, £, $} 

δ = Q × (Γ \ {£, $}) → Q × Γ x {+} 

q0 = start state 

F = {q2, q4} 

 

A Deterministic Linear Bounded Automaton (lba) has one input string w2 that works for both the n = 2i 

+1 or n = 2i + 2 distinct parity cycles of the URS (unlike the other machines) but both even and odd 

computations will be described below for completeness. It should be understood that dividing the URS 

process into even and odd parts is done for instructional purposes to show how the URS works on a 

machine but in nature the combined even and odd components of the URS happen simultaneously in 

the infinite product. 
 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅2𝑖+1, 𝑅2𝑖+1

# )(𝑅2𝑖+2, 𝑅2𝑖+2
# )(𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

# ) = 𝑎𝑏𝑛𝑐𝑛𝑑𝑛. 



 

 

   

w2 = 𝑅0𝑅0
#𝑅2𝑖+1𝑅2𝑖+1

# 𝑅2𝑖+2𝑅2𝑖+2
# 𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2

#  
     = (𝑅0𝑅0

#)(𝑅2𝑖+1𝑅2𝑖+1
# )(𝑅2𝑖+2𝑅2𝑖+2

# )(𝑅2𝑖+1𝑅2𝑖+2𝑅2𝑖+1𝑅2𝑖+2
# ) 

     = abncndn  

 

Output form of words w1 and w2 

 

w2 = 𝑟0𝑟0
#𝑟2𝑖+1𝑟2𝑖+1

# 𝑟2𝑖+2𝑟2𝑖+2
# 𝑟2𝑖+1𝑟2𝑖+2𝑟2𝑖+1𝑟2𝑖+2

#  

     = (𝑟0𝑟0
#)(𝑟2𝑖+1𝑟2𝑖+1

# )(𝑟2𝑖+2𝑟2𝑖+2
# )(𝑟2𝑖+1𝑟2𝑖+2𝑟2𝑖+1𝑟2𝑖+2

# ) 
     = ABnCnDn 

 

where 

  

a = 𝑅0, 𝑅0
# 

bn = 𝑅2𝑖+1, 𝑅2𝑖+1
#

 

cn = 𝑅2𝑖+2, 𝑅2𝑖+2
#  

dn = 𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2
# 

 

A = 𝑟0𝑟0
# 

Bn = 𝑟2𝑖+1𝑟2𝑖+1
#  

Cn = 𝑟2𝑖+2𝑟2𝑖+2
#  

Dn = 𝑟2𝑖+1𝑟2𝑖+2, 𝑟2𝑖+1𝑟2𝑖+2
# 

 

Transition Function δ of the deterministic Linear Bounded Automaton that accepts the URS language  

 

1. δ(q0, a) = (q1, A, +) 

2. δ(q1, bn) = (q2, Bn, +) 

3. δ(q2, cn) = (q3, Cn, +) 

4. δ(q3, dn) = (q4, Dn, +) 

 

Deterministic Linear Bounded Automaton that accepts the URS word form abncndn in the odd parity 

cycle for n = 2i +1 

 

1. δ(q0, a) 

 

£ a bn cn dn $ 

                    ↑ 

 

1. δ(q0, a) = (q1, A, +) 

 

£ A bn cn dn $ 

                    ↑ 



 

 

 

2. δ(q1, bn)  

 

£ A bn cn dn $ 

                                ↑ 

 

2. δ(q1, bn) = (q2, Bn, +) 

 

£ A Bn cn dn $ 

                   ↑ 

 

3. δ(q2, cn)  

 

£ A Bn cn dn $ 

               ↑ 

 

3. δ(q2, cn) = (q3, Cn, +) 

 

£ A Bn Cn dn $ 

                           ↑ 

 

4. δ(q3, dn)  

 

£ A Bn Cn dn $ 

                           ↑ 

 

4. δ(q3, dn) = (q4, Dn, +) 

 

£ A Bn Cn Dn $ 

                            ↑ 

 

(q4, $) = Accept  

 

Deterministic Linear Bounded Automaton that accepts the URS word form abn in the even parity cycle 

for n = 2i + 2 

 

1. δ(q0, a) 

 

£ a bn $ 

                    ↑ 



 

 

1. δ(q0, a) = (q1, A, +) 

 

£ A bn $ 

                  ↑ 

 

2. δ(q1, bn)  

 

£ A bn $ 

                  ↑ 

 

2. δ(q1, bn) = (q2, Bn, +) 

 

£ A Bn $ 

               ↑ 

 

(q2, $) = Accept 

 

A recursive language is decidable. This means that the machine always halts upon acceptance or 

nonacceptance of the input word. The machine will not loop on any input word that is not accepted. 
 

∏
𝑖=0

∞

(𝑅0, 𝑅0
#)(𝑅2𝑖+1, 𝑅2𝑖+1

# )(𝑅2𝑖+2, 𝑅2𝑖+2
# )(𝑅2𝑖+1𝑅2𝑖+2, 𝑅2𝑖+1𝑅2𝑖+2

# ) = 𝑎𝑏𝑛𝑐𝑛𝑑𝑛 

 

Instead of taking an exponential amount of tape space derived from an exponential function of the 

length of the input word x, as computed on a deterministic Turing machine, the word computed on a 

linear bounded automaton takes only a linear amount of tape space; this is derived from a linear function 

of the length of the input word x. The universal rewrite system, as realized on a linear bounded autom-

aton, is then constructed from the totality of all the linear word blocks for each distinct n. 

7.Conclusion 

The Rowlands-Diaz universal alphabet and rewrite system appears to provide a meta-pattern for math-

ematics and science, extending from quantum mechanics and particle physics up to biology and even 

consciousness. Here, we have shown that it is compatible with computational and formal language the-

ory, using a deterministic Turing machine, a Post machine, a Finite machine with two pushdown stores, 

and a linear bounded automaton, which means that we can apply computational theory and practice 

directly to all these systems. Mathematics gives us a guide to the patterns of Nature, rather than the 

meta-pattern, because it is structured on exact repetition, e.g. of the integer series 1, 2, 3, 4, 5 …, rather 

than uniqueness. The meta-pattern is a unique birth-ordering in an infinite process, and any reproduction 

of it will only ever be finite. In addition, mathematics only reads (rewrite rules 2.0 conserve rules (1), 

(2) and (3)), bounded by the zero cardinalities, each of which creates a new algebra (rewrite rules 2.0 

create rules (0), (4) and (5)). Physics requires a unique sequence of events, never repeated, which means 

that, to simulate it, we must use machines that can write as well as read, as in the cases discussed here, 

which makes its requirements different from those of much mathematically-based computational theory, 

which is frequently concerned with pure reading automata. Physics has a special system for obtaining 

zeros using nilpotents, which are each unique and hence at its most basic level can describe a unique 

birthordering. We see that the mathematics most appropriate for this development is a form of Clifford 

algebra. This does not prevent us from developing alternative mathematical ideas, such as the higher 



 

 

Cayley-Dickson algebras, but they cannot be used to describe the system itself. The development of a 

computational representation based on the most general devices that can be imagined gives a powerful 

indication that the Rowlands-Diaz universal rewrite system provides the most general, generic and effi-

cient description so far known for Nature’s most fundamental processes. 
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